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This guide—how it came to be, who it’s for, and how to use it

Ontology-based Decentralised 
Sharing of Industry Data in the 

European Circular Economy

	● 12 partners, 7 countries:
◦ Linköping University (SE)
◦ Interuniversitair Micro-Electronica Centrum (BE)
◦ Concular Ug Haftungsbeschrankt(DE)
◦ +Impakt Luxembourg Sarl (LU)
◦ Circularise Bv (NL)
◦ Universität Hamburg (DE)
◦ Circular.Fashion Ug (DE)
◦ Lindner Group Kg (DE)
◦ Ragn-Sells Recycling Ab (SE)
◦ Texon Italia Srl (IT)
◦ Rare Earths Industry Association (BE)
◦ Prague University of Economics & Business (CZ)

	● From: June 2022-November 2025
	● Funding: Horizon Europe

◦ Grant agreement #101058682

Three use case domains:
	● Textile industry
	● Electronics industry
	● Construction industry

How to use the guides
There are two guides: one which focuses on 
circular value chain development and innovation, 
and a second technical guide that is dedicated 
to setting up a decentrally organised data-
sharing infrastructure in such a way the data is 
interoperable and compatible.

Both guides focus on the practical steps to take 
towards better functioning circular value chains. 
Each guide discusses the relationship with the 
other, so it is clear where they connect. Depending 
on your needs and circular maturity level, you 
can drive straight into the technical parts, or you 
can first spend a moment thinking about the 
functioning of your circular value chain and how 
to design or improve it. It is up to you to decide 
what you need and where to start. Together, both 
parts of the Onto-DESIDE project outputs support 
the planning and automation of management 
and execution of circular value networks at scale, 
contributing to Europe’s digital and green Twin 
Transition.

For more details, or more technical descriptions 
as well as templates, explainer videos, and other 
supplementary materials go to our website.

Please visit: 
www.ontodeside.eu

What was done and how
Onto-DESIDE applied a transdisciplinary and 
iterative methodology to develop the new tools 
and technologies for circular value networks. 
Academia and practice came together, using three 
diverse real-world industry use cases selected 
for their diversity and complexity—construction, 
electronics, and textiles—as testbeds to derive 
needs and validate the within- as well as 
cross-sector applicability of the solutions. 

The project, running from June 2022 to November 
2025, was structured into multiple work packages. 
One focused on the creation of the innovation 
method, a second on ontology development, 
and a third on the data-exchange platform. Each 
used their own methodology and domain-specific 
expertise, respectively, design science methods; 
agile ontology engineering practices including 
eXtreme Design (XD) resulting in the Circular 
Economy Ontology Network (CEON); and the 
application of mature open web standards to 
create a secure and decentralized interoperable 
data sharing infrastructure dubbed the Open 
Circularity Platform (OCP). Collaboration across 
these tasks makes them comprehensive and 
integrated. In uniting top-down research and 
standards analysis with bottom-up learning 
from use cases, the project created a solid and 
actionable foundation for advancing the circular 
economy.

Why this guide? The Onto-DESIDE project.
The Onto-DESIDE project aimed to accelerate 
the transition to a circular economy (CE) where 
materials, components, and products are reused 
to reduce waste and retain value. At the moment, 
circular value networks are difficult to design and 
scale because it is difficult to make sense of such 
systems as a whole. Second, industries struggle to 
form circular value networks due to inconsistent 
terminology, lack of semantic clarity, and limited 
tools for secure, automated data exchange. 

To address this, Onto-DESIDE combined 
conceptual and technical innovation, by 1) 
creating innovation capacity for circular value 
chains, and 2) addressing key technical barriers 
to data sharing across industries. It developed 
the Multi-Flow Method (MFM), which integrates 
resource, energy, value, and information flows 
into a systemic view of circular value chains, using 
generative tensions to explore root causes to 
barriers and find ways to improve functioning and 
robustness. The project also introduced technical 
solutions: ontologies to model materials, 
products, actors and processes, ensuring vertical 
(within domains) as well as horizontal (across 
domains) semantic interoperability, together with 
a decentralised collaboration platform where data 
can be exchanged. However, a crucial aspect of 
supporting transformation is to provide guidance 
in using these new tools: the aim of this guide.

Guide 1: Circular value chain design, 
development & innovation

Guide 2: Decentralised sharing of 
data & information

MFM
Multi Flow Method Circular Economy 

Ontology Network
Open Circularity 
Platform

Project logo
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Guide 2—The guide in front of you now:
Decentralised sharing of data & information: 

This guide focuses on the technical side. It 
explains how to set up a decentralised, secure 
and automated data-sharing infrastructure that 
supports a chosen value chain configuration 
and the collaborations between the actors 
involved. The steps involved in setting up this 
infrastructure needs the involvement of different 
types of roles in the involved organisations. We 
identify 4 such roles:

	● Decision Maker: May be the value chain 
manager, coordinating the setup of the whole 
value chain, or merely the internal manager 
in charge of ensuring the participation 
of a specific actor in the value network 
configuration. Additionally, a decision maker 
may be a CTO or CIO making decisions about 
the IT infrastructure setup and investments.

	● Data Steward: Any role that produces, 
manages or maintains the data that is to be 
shared and used in order to make the value 
chain configuration work.

	● Developer: Either an information architect/
data modeller, or a software developer/IT 
specialist. These are the roles that will do the 
practical work of modelling and transforming 
the data, as well as setting up the actual 
infrastructure and configuring it.

	● End-User: The roles within the value chain 
organisations that hold the needs for receiving 
or sharing the data. For instance, this could 
be a person at a recycling facility, needing the 
information about incoming used materials in 
order to make decisions regarding where to 
dispatch a certain batch or container.

Guide 1—See: www.ontodeside.eu
Value chain design, development & innovation: 

This guide has a strategic focus, and explores 
what currently shapes the value chain dynamics 
and how circular strategies can be (better) 
supported. The following roles are needed to 
successfully complete the process:

	● Project lead: Coordinates the overall process 
in which the method is applied. Ensures 
the right people are involved, aligns the 
method with the project’s goals, and takes 
responsibility for follow-up after sessions and 
working groups.

	● Facilitator: Guides the group through the 
Multi-Flow Method. Ensures the process is 
structured, that flows, tensions, and patterns 
are captured in a way the group can work with, 
and that different perspectives are heard.

	● Decision maker(s): Stakeholder 
representatives with the authority to shape 
the value chain configuration or influence 
(strategic) decisions. To ensure relevance 
and actionability, the process should include 
different perspectives (e.g., suppliers, 
customers, recyclers, logistics providers).

	● (Flow) Experts: Bring (technical and practical) 
knowledge of specific flows (material, 
information, value, energy). They explain 
how flows operate in practice and support 
the group in understanding constraints, 
dependencies, and opportunities.

Who the guides are for
Both of our guides are aimed at anyone who 
wishes to engage in circular oriented innovation. 
That is: anyone who wants to explore new or 
better circular value chains as well as get practical 
about data and information sharing to enable this 
in practice. Each guide is meant as an entry point 
into their respective topics, and they each target 
different roles—with an emphasis on the role and 
contribution of these different roles to the various 
steps in the process. Mainly these two guides 
provide an overview and explain what to expect 
whilst on this journey. In this, we focus on how 
different roles can work together. To this end at 
the top of each section, you find an indication of 
what roles are typically involved or who is needed 
to provide input to complete a step successfully. Of 
course, these roles can be different people, or be 
one and the same. Organising the guides around 
roles clarifies responsibilities and interfaces across 
the process, supporting structured collaboration, 
aligned expectations, and deliberate progress in 
circular-oriented innovation.

Facilitator

Facilitator

Facilitator (Flow) 
Experts

(Flow) 
Experts

Data 
Steward:

Data 
Steward:

Data 
Steward:

End-
User:
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Why, what and how of Circular Economy

For this reason, circular innovation differs 
fundamentally from linear or ‘business-as-usual’ 
innovation. It involves creating virtuous loops—
feedback mechanisms where resources re-enter 
the value chain—and generating emergent 
properties like sustainability and resilience. These 
benefits arise not from isolated actions but from 
how the entire system behaves. 

 

durable composites can hinder recyclability, 
and remanufacturing may initially require more 
materials—not less. And so on. The challenge is to 
design and operate sets of circular strategies that 
resolve, go around or balance these tensions and 
deliver real benefits. Doing so requires the right 
mix of competition and collaboration, clear and 
easily accessible data, and adaptive management 
across the value entire chain.

CE is no longer optional, but a must-have
Mounting resource scarcity, increasingly volatile 
supply chains and resource prices, intensifying 
legislative and regulatory pressure, and rising 
stakeholder expectations mean that CE is no longer 
optional—it’s essential for business resilience, 
compliance, innovation, and competitiveness3,4,5. 
Companies that continue to rely on a take-make-
dispose model expose themselves to higher costs, 
operational disruptions, and reputational risks, 
while those that adopt circular strategies can 
secure materials, stabilize supply, and strengthen 
their license to operate. Thus, CE is becoming a key 
driver of both risk management and value creation.

Likewise, finance and investors are intensifying 
the shift of capital toward businesses that 
demonstrate circular strategies, recognizing them 
as lower-risk, future-fit, and better positioned 
to deliver long-term value6. Capital markets 
are increasingly embedding sustainability and 
circularity metrics into lending, investment, and 
valuation models, rewarding companies that 
proactively align with emerging standards. Those 
who fail to adapt may face shrinking access to 
capital, higher borrowing costs, and reduced 
investor confidence, while circular leaders 
stand to attract investment, partnerships, and 
preferential market positioning.

The Challenge
But… ‘going circular’ is complex. It requires systems 
thinking to understand how and why materials flow, 
where and why waste originates, and how circular 
strategies interact. It requires moving beyond 
simplistic models and truly solving problems—
not shift them elsewhere or create new ones. 
And: not all circular strategies work at every scale 
or in every context, and some may even compete 
or create trade-offs. For example, choosing highly 

“Take-make-use-lose”
Our global economy operates largely on a linear 
model: extract, produce, consume, and dispose 
—repeat. This system assumes unlimited access 
to resources and an infinite capacity for waste 
absorption. But our planet can provide neither: 
we are rapidly depleting finite resources and are 
overwhelming natural systems with waste and 
emissions. Even recycling, often seen as a solution, 
only addresses a very small part of the problem 
and fails to fundamentally transform how we use 
resources. What’s more, this extractive system 
entrenches inequality, undermines livelihoods, 
and worsens living conditions for many.

For example, resource extraction has already 
more than tripled since 1970 and is projected 
to rise another 60% by 2060 if the current 
path is followed, accounting for over 60% of 
global greenhouse gas emissions and 40% of 
pollution-linked health impacts1. Such scale 
places enormous pressure on ecosystems and 
communities. No wonder that the linear economy is 
sometimes also referred to as “Take-make-use-lose”2.

Instead…
Our economies will have to change their extractive 
practices to sustainable and regenerative ones. 
Circular Economy (CE) offers one path through the 
application of Re-strategies like rethink, reduce, 
retain, reuse, repair, refurbish, remanufacture, 
recycle—and a range of related strategies like 
composting & industrial symbiosis. The aim is 
to better meet the needs of the whole system–
planet, people and businesses–and thereby 
encourage different ways of handling waste and 
resources, improving resource conservation, 
efficiency and productivity. Or: how can we live 
comfortably - without costing people and the 
planet?

Su�ciency, 
prevention, 
reduction,

non-toxicity

Virgin 
inputs

© FB

Closing material loops

More intense use 
& 

reduced idle time 
of products

Reuse components & 
remake products

Material 
cascades, 
cascaded 
recycling*

Product 
cascades*

Component 
cascades*

Powered by (renewable) energy Entropy sink: some waste is unavoidable

Optimise 
use

*Cascaded to other uses or other systems for subsequent use

Figure: Circular strategies in the use phase, and for products, components and materials.
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This guide
To help with this, the Onto-Deside project created 
the following guidance and support for:

	● Value chain design, development & innovation: 
gaining insight into the root causes of barriers 
and enablers that shape the behaviour of value 
chains, and examining how this dynamic can 
(better) support circular flows.

	● Decentralised sharing of data & information:  
understanding data needs and availability, 
formats, and aligning the data to a shared 
domain model, the Circular Economy 
Ontology Network (CEON), setting up an Open 
Circularity Platform (OCP)—data-sharing such 
that data becomes interoperable, but where 
control over what to share with who and 
when remains with the data owners.

The guide in front of you covers:
	● Decentralised sharing of data & information.

Please find the other guide at:
>>> www.ontodeside.eu

Value-, resource- & information-flows
Therefore, to design, improve, and operate a 
circular way of working it is essential to adopt a 
value chain perspective - sometimes also called a 
value network. This is because circularity cannot 
be achieved in isolation—materials, components, 
products, as well as benefits and impacts flow 
across multiple actors and stages. Only by seeing 
how decisions in one part of the chain affect 
others can businesses understand how shared 
benefits can be created and value captured and 
to design circular strategies that synergistically 
reinforce each other. This perspective also 
highlights trade-offs and tensions that must be 
managed collectively, rather than pushed onto 
individual actors, if the system is to function. 
Data and information play a critical role in this: they 
provide the transparency needed to track resource 
flows, identify where waste and inefficiencies occur, 
and coordinate action across suppliers, partners, 
and customers. Without accurate, shared and 
frictionless access to information, circular value 
chains cannot be designed effectively or operated 
at scale.

4. Strategy Use: Selection vs. Configuration
	● Linear mindset: Strategies are chosen 

individually—reuse or recycling, efficiency or 
durability—as they benefit one actor, often 
without considering their interactions.

	● Circular mindset: Strategies are combined into 
configurations, designed to work together 
synergistically and allowed to evolve over 
time, seeking the addition of more circular 
strategies through continuous improvement.

5. Innovation Process: Execution vs. Iteration
	● Linear mindset: Innovation follows a fixed 

plan—analyse, design, implement—assuming 
predictability and with limited flexibility.

	● Circular mindset: Multiple innovation 
modes operate alongside each other, where 
innovation also incorporates processes that 
are iterative, involving experimentation, 
learning, and the ability to pivot when 
assumptions prove incorrect.

6. Responsibility: Compliance vs. Stewardship
	● Linear mindset: Responsibility is often limited 

to meeting regulations or minimizing costs.
	● Circular mindset: Responsibility includes 

stewardship—ensuring that circular strategies 
address real problems and no new ones are 
created elsewhere in the system. And: that the 
needs of all parts of the system are served.

From a linear to a circular mindset
All this means that a different mindset is needed when engaging in circular oriented-innovation. Crucially: 
it means creating systems where multiple circular strategies operate synergistically—where, through 
collaboration, all actors benefit. Circularity Thinking helps cultivate this new circular mindset.

... then reman, refurb, 
 & upgrading...

Multiple cycles of
reuse...

... followed by
reuse of parts...

... and recycling 
of materials

Reconsider why & what
rethink...

1. Flow Structure: One-Way vs. Feedback Loops
	● Linear mindset: Resources flow in a straight 

line—extraction, production, use, disposal—
with minimal interaction between processes.

	● Circular mindset: Resources circulate 
and regenerate through feedback loops, 
re-entering the system several times (as 
products, components, and materials) and 
influencing upstream and downstream 
decisions over time.

2. Value Creation: Localized vs. Emergent
	● Linear mindset: Value is created and captured 

at specific points in the chain (e.g. sales, 
production)—with opposing and conflicting 
interests, resulting in value conflicts.

	● Circular mindset: Value is emergent, arising 
from how the entire system functions—
through resilience, sustainability, and shared 
innovation. Both the whole and the parts 
benefit equally.

3. Problem Solving: Fragmented vs. Systemic
	● Linear mindset: Problems are solved in 

isolation, often within departmental or 
disciplinary silos. This leads to displacement 
and the creation of new problems.

	● Circular mindset: Problems are addressed 
systemically, considering interdependencies, 
long-term effects, and cross-sector dynamics.
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For all circular strategies—from recycling to repair & from reuse to remanufacturing

(D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.
Why: Enabling manufacturers to take-back their 
products, ensuring access to future feedstock.

At the end-of-life stage of a building, a building 
owner initiates a demolition plan and assesses 
reuse and recovery options for installed 
components. Among these, the acoustic floor 
tiles—originally made with recycled feedstock 
from apparel waste—are identified as having high 
reuse potential, but not in their current condition.

The owner contacts the original tile manufacturer, 
who offers a take-back program. Through a 
data exchange platform—facilitated by an 
intermediary—the manufacturer provides 
pricing and logistics information for reclaiming 
the tiles. The tiles are returned, inspected, and 
remanufactured into new flooring systems, 
integrating both recovered and new materials. 
This process reduces raw material demand and 
preserves embedded value.

(C) End-of-life: reuse
What: Reuse and resale of a door for use in other 
building projects.
Why: Linking supply & demand through a digital 
market place for second-life parts & components.

A building owner, preparing for demolition, 
assesses the reuse potential of installed 
elements, such as doors, for repurposing through 
resale. This information is used by the demolition 
contractor to negotiate a fair price for the 
building’s demolition, and sets the frame for what 
demolition methods will be used.

To find a new use, the building owner lists the 
components, including the doors, on a digital 
marketplace—provided by an intermediary for 
sale to construction companies for reuse in new 
projects. Metadata such as dimensions, condition, 
and installation history are shared, and enriched 
with images, enhancing buyer confidence. Pricing 
information is managed securely via decentralized 
data pods, ensuring only authorized parties can 
access commercial terms and optimising the value 
for the building owner. Planning considerations 
are automatically taken into account.

(B) Middle-of-life: repair
What: Repair of an audio system through access 
to reliable spare parts and instructions.
Why: Automating sustainable asset management 
through digital tools to enable easier data 
management, whilst protecting sensitive data. 

A building owner identifies a malfunction in the 
installed audio system. Using a data exchange 
platform they access repair instructions and 
discover that the original equipment manufacturer 
offers a repair service. The component is sent for 
repair, and the manufacturer replaces the faulty 
speaker with a newer model containing a higher 
amount of recycled content.

The repaired unit is reinstalled, and updated 
product data is published and added to the 
building’s digital twin, including material 
composition and sustainability attributes. Digital 
product passports record both original and 
repaired versions, tracking components and 
their environmental impact—including recycled 
content, origin, and certifications—automating 
the management of building information.

To help bring the guidance to life and offer concrete examples to illustrate our methods, here are 4 short 
examples of different circular strategies that we’ll refer back to throughout this guide. Although these 
scenarios (A to D) address different strategic priorities, they have the same needs in common. Each 
actor in the network must be able to selectively share its data, based on ever-changing business needs. 
Meanwhile, to track resource flows across stakeholders and make appropriate decisions, a common 
understanding of this shared data is needed.  

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel waste 
into feedstock for floor tiles.
Why: To unlock circular business models, and 
help to find the right recycled feedstock through 
product passports and secure data exchanges.

A product manufacturer creates a performance 
shoe using inputs from various material suppliers, 
each contributing data to a shared platform for 
product passports using standardized formats. 
Once the shoe reaches end-of-life, a recycling 
operator disassembles it, guided by digital 
instructions, and extracts the rubber outsoles and 
textile laces that are made into new bulk materials.

These recovered materials are listed on a digital 
marketplace, enriched with a certificate and 
metadata including composition, condition, and 
recycled content. Next, a materials processor 
identifies suitable batches and requests pricing 
via the platform. After purchase, the recycled 
inputs are turned into materials that an interior 
outfit company uses for acoustic floor tile layers. 
Certificates and material data travel along, and 
a new product passport is generated for the 
product.
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Decentrally sharing data—an overview of the what, why and how

Scaling through automation and standardization
In order to scale the circular economy to cover 
virtually all material flows in our society, the 
information infrastructure needs to focus on 
automation and be built to scale. Each actor in a 
circular economy must connect with many other 
actors of different types and over long periods of 
time—an unmanageable task in practice unless 
current ways of exchanging information, such as 
phone calls and emails, are largely replaced by 
more automated solutions.

Apart from the technical scalability of the 
solutions, for instance, being able to handle big 
data, return query results in a timely manner and 
so on, this also means that automation needs 
to increase in all steps of the value chain setup 
and management. While decision making still 
needs human oversight, automation should be 
the target for all the frequent interactions along 
the value chain. This means that data sharing and 
access should be automated, with as little manual 
configuration as possible at setup time, and ideally 
no human intervention at execution time. For 
instance, adding new actors and their data sources 
to the network will likely involve some human 
mapping and configuration effort, e.g. to set up a 
sharing endpoint and provide access rights, but at 
runtime the exchange should be automatic. 

This in turn implies that data sharing needs to be 
based on standards: not require every other actor 
in the network to adopt yet another technology 
or data format into their IT infrastructure, but 
to use what is already available and proven to 
scale. It also means that data sharing needs to 
be based on agreed vocabularies, i.e. ontologies, 
as the language for interchange of information. 
Ensuring not only technical but also semantic 
interoperability of the information to be shared. 

Why decentralised?
In the Onto-DESIDE project we focused on 
decentralised data sharing solutions as it has 
certain benefits over centralised data sharing. 
Unlike centralised systems, where all information 
is collected, stored, and managed by one party, 
decentralised approaches allow each of the 
participating organisations to retain control and 
responsibility. This avoids the risks of bottlenecks, 
single points of failure, or power imbalances 
where one actor owns or controls the entire 
dataset. It also increases flexibility to integrate 
diverse data sources and adjust to evolving technical 
standards. In practice, decentralised approaches are 
often more acceptable to diverse actors, making 
collaboration possible in complex value chains.

This is especially relevant in a circular economy, 
where no single authority governs the system 
and collaborations can span multiple value 
chains, across multiple domains and participant 
constellations, and involve multiple circular 
strategies. Each actor brings its own priorities, 
IT systems, and sensitivities, which makes 
centralised data systems difficult to accept for 
many. For reasons of security and confidentiality, 
organisations also want to retain sovereignty over 
their data: deciding what to share, with whom, 
and under what conditions. Decentralised data 
sharing enables this by allowing data to remain 
in an organisation’s own systems, on their own 
premises, while still making agreed portions 
accessible to partners. In this way, sensitive 
business knowledge is protected, collaboration 
barriers are reduced, and trust between partners 
can grow—creating the conditions for more 
open, yet secure, circular value chain innovation. 
By distributing control in this way, decentralised 
systems reflect the distributed and collaborative 
nature of circular economies themselves.

it becomes the infrastructure that operationalises 
this alignment. It ensures that information about 
resources, processes, and transactions can flow 
securely and consistently across the value chain. 
Platforms can host material passports, product 
IDs, or usage histories, making them accessible 
in formats that others can understand, trust and 
act upon. With such systems, businesses can 
make informed choices about design, reuse, or 
recycling, and policymakers can monitor progress 
without imposing excessive reporting burdens.

Seen this way, data and information are the 
bridge between circular economy ambitions and 
their practical realisation. Value chain innovations 
create the demand for shared knowledge; 
ontologies and data platforms make it possible 
to meet that demand in ways that are consistent, 
scalable, and verifiable. Without them, circular 
strategies risk being isolated pilots. With 
them, they can be connected into frictionless 
circular ecosystems where information flows as 
seamlessly as materials—whilst keeping what 
matters safe. 

This guide contains more information both on:
	● Ontologies for CE—and the use of CEON, which 

is a reusable set of core ontology modules that 
can be extended to fit virtually any CE use case.

	● How to set up a decentralised data sharing 
platform—and how the OCP, which is one such 
platform, allows for sharing data in a secure 
decentralised manner. 

Both CEON and OCP are outputs of the Onto-
DESIDE project and are freely available. Before 
going into the process of how to use these two 
tools, first we explain a little bit more about the 
foundations these two tools were built on.

Data & information sharing and management
Circular economy innovations along value chains 
depend on collaboration across multiple actors—
from material suppliers to manufacturers, 
retailers, and recyclers. But collaboration is 
only effective if it is built on a foundation of 
reliable, consistent information and if it respects 
competition, too. This is why data and information 
sharing is not a side issue but a central enabler of 
circular value chain innovation.

Every circular practice—whether it is product-
as-a-service, reverse logistics, reuse, or high-
quality recycling—requires transparency about 
what resources exist, where they are, and in 
what condition. If one actor knows the material 
content of a component but cannot share it 
in a usable way with others, opportunities for 
reuse or recovery are lost. Similarly, without 
trusted information flows, it is hard to coordinate 
responsibilities, design for reuse, or match supply 
and demand in secondary markets.

The challenge is that different organisations often 
use different terms, classifications, and IT systems. 
What one company calls a “part,” another might 
describe as a “module.” And the same term, 
such as “product”, may mean different things 
depending on the actor's perspective: what is 
someone’s product may be another’s material 
or component. Also: data that is meaningful in 
one system may be unreadable or misleading in 
another. This is why aligned ontologies—shared 
ways of structuring and describing information—
are critical. Just as having a technical standard 
makes it possible to plug components together, 
having an information standard with clear 
semantics makes it possible to plug data together.

This is where a data-sharing platform comes in: 
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and what kind of work is involved in actually implementing and running it in practice. The life-cycle process 
described in this guide consists of ten steps. It starts with understanding the needs of the intended value 
chain configuration and ends with maintaining and evolving the infrastructure once it is in use by value 
chain actors. The guide can be used by decision makers to understand which considerations are involved 
in setting up such an infrastructure, and by technical teams as a high-level overview and checklist when 
implementing it within an organisation or across a network of organisations.

What is available
The Onto-DESIDE project has developed and demonstrated one way to set up such an infrastructure: it 
is decentralised, secure, based on existing and emerging web standards, and supports a high degree of 
automation in data sharing and access. Over time, individual components can be replaced—for example, 
new software tools for hosting and managing data may appear—but the overall approach to designing and 
implementing the infrastructure, as described in this guide, remains valid. This guide therefore focuses on 
the key steps needed to decide how to set up such an infrastructure, how to build applications on top of it, 
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Figure: The process for setting up your decentralised data infrastructure,    starting with a strategic phase, followed by increasingly technical development.



20 21

Responsible role:      Decision maker(s).   Participants:      End users who will practically implement the flows.

This analysis highlights gaps in transparency, 
duplication of effort, and weak or misaligned 
incentives for data sharing, thereby ensuring 
that technical solutions are grounded in the lived 
realities of actors across the value chain. 

The insights gained—such as identifying actors, 
clarifying information needs, mapping existing 
data, highlighting gaps, and exposing barriers—are 
an essential starting point. However, at this stage 
they remain too high-level to guide infrastructure 
design. Subsequent steps (2 and 3) are therefore 
required to translate them into detailed technical 
requirements and system specifications.

With enabling infrastructure
Each type of flow also requires its own enabling 
infrastructure. Logistics hubs and processing 
plants support resource flows; value flows 
need contractual, accounting, and financial 
mechanisms that allow costs and benefits to be 
distributed fairly; energy flows require renewable 
and smart grids to match supply and demand 
efficiently; and information flows depend on data 
standards and digital platforms to ensure that 
actors can exchange reliable, trusted data.

Truly circular value chains integrate all four flows—
resources, value, information, and energy—with 
infrastructures designed to move them smoothly. 
To not do so, risks creating bottlenecks.

Understand the whole to set information needs
Guide 1, and in particular the Multi-Flow Method, 
helps circular innovators look at each flow in a 
value chain and understand what is driving it, and 
how the different flows influence one another. By 
working with what we call generative tensions, 
the method uncovers the underlying causes 
behind sets of barriers and enablers, instead of 
only dealing with their symptoms. Taken together, 
these insights provide a systemic perspective on 
how flows, actors, and constraints interact.

In practice, working through the steps of the 
method provides a systemic overview that shows 
where challenges lie and what information is 
needed to address them. Mapping the flows 
reveals where data is missing, siloed, or poorly 
connected, and where sharing is critical for 
effective collaboration.

Clarifying flows and their interconnections 
exposes leverage points for greater circularity and 
shows how information underpins collaboration. 

can therefore be important when choosing which 
circular strategies make the most sense. At the 
same time, energy flows can also enable circularity: 
waste heat from one factory can power another, 
renewable electricity can drive recycling processes, 
and smart grids can synchronise production with 
peaks in renewable supply, making processes both 
more sustainable and cost-effective. 

… and information flows!
But without reliable data on resource condition, 
origin, or composition, resources remain invisible, 
untrusted, and underused. And likewise, without 
trustworthy information about the actors 
involved and the processes they apply, circular 
collaboration cannot be orchestrated effectively. 
Companies need to know who potential partners 
are, which standards they follow, and how their 
practices align with environmental, social, and 
economic requirements. Without this visibility, it 
becomes difficult to discover promising partners, 
evaluate risks, or configure value chains that are 
efficient and resilient. In this sense, information 
flows are the backbone of circular systems.

Just as materials, parts, and products circulate 
through supply chains, the data describing them 
must also flow—through mechanisms such as 
digital product passports, certification schemes, 
or open data platforms—to guarantee traceability, 
compliance, and quality assurance. Construction 
firms, for example, rely on material passports 
to verify that reused doors and windows meet 
safety standards, while fashion brands depend 
on accurate fibre content data to enable textile-
to-textile recycling at scale. Only when such data 
travels consistently, transparently, and across 
organisational boundaries can circular systems 
expand beyond isolated pilots and mature into 
trusted, efficient, and resilient networks.

> See also Guide 1:
Value chain design, development & innovation

Resource flows
Guide 1 introduces a set of tools from the 
Circularity Thinking innovation methodology 
to support developing what (set of) circular 
strategies may be used in a given situation. 
It is a life-cycle and systems-based approach 
that “follows the flows”: always asking where a 
resource comes from, where it goes, what forces 
drive this, what impacts it creates—and how 
these flows can be improved to become more 
circular and regenerative. This analysis helps 
to design how resources should flow in a value 
chain. But resource flows are only one part of 
the story: to ensure robust and well-functioning 
circular systems, the methodology also includes a 
range of other essential flows.

And also: value-flows…
For circular value chains to function at scale, value 
flows matter greatly. They determine whether 
circular strategies make business sense. A 
product may be recyclable, but unless customers, 
producers, and/or regulators agree on the value it 
creates, it may never be adopted. Value includes 
not just money but also environmental and social 
benefits. For instance, a take-back scheme for 
electronics only works if customers see value in 
returning devices, and businesses can capture 
value from resale, refurbishment, or recycling.

… energy flows…
Energy flows can be equally critical, as every 
resource loop consumes or saves energy. Some 
circular processes are far more energy-intensive 
than others—for example, melting metals back 
for recycling requires much more energy than 
reusing a part. Factoring in these energy costs 

Data 
Steward:

End-
User:

Step 1 - Map information flows—value chains are more than resource flows alone



(B) Middle-of-life: repair
What: Repair of audio system through 
access to reliable spare parts & instructions.

Current undermining tension—Concentration vs. 
Distribution: Repair data, diagnostics, and spare-
part info are locked behind OEM portals and 
contracts. Access to repair guides, compatibility, 
and pricing is controlled by OEMs, while building 
owners must scrape PDFs or call helpdesks, and 
updating a building’s digital twins is cumbersome. 
This erodes trust, invites errors, and tilts decisions 
toward replacement: unable to verify “fit-for-use,” 
and nudged by warranties and liability, owners 
replace rather than repair—driving premature 
end-of-life and extra cost.

Improvement opportunity for data flows: 
Apply governed, selective disclosure. That is: 
encode diagnostics and compliance as verifiable 
credentials; grant time-limited, purpose-bound 
access to repair data; and automatically sync 
updated composition and sustainability attributes 
to the digital twin or product passport after 
repair. This aligns incentives—owners get proof, 
OEMs keep control—ensuring access to reliable 
parts and streamlined data updates, letting repair 
outcompete replacement. Creating this capability 
develops into the focus of the next nine steps in 
the process.

(C) End-of-life: reuse
What: Reuse and resale of a door for use 
in other building projects.

Current undermining tension—Robustness vs. 
Adaptability: Ahead of demolition, doors are 
assessed and listed, but rigid, document-based 
formats can’t capture real-world variability. Key 
fields—dimensions, swing, interfaces, material, 
glazing, ratings, condition, and install history— 
are missing or incomparable so buyers can’t test 
fit for new projects. Planning constraints aren’t 
linked, and commercial terms sit in scattered 
PDFs. “Robust” formats (reports, photos) are 
too static to support confident pricing for reuse, 
so building owners accept conservative offers or 
default to disposal.

Improvement opportunity for data flows: Enable 
machine-readable door passports with geometry, 
interfaces, ratings, condition, provenance, images, 
and location, using shared vocabularies and 
verifiable credentials. Sync planning constraints 
automatically and manage contracts decentrally 
so only authorized parties can access them. 
Interoperable APIs let marketplaces and builders 
auto-check fit and code, improving negotiation 
with the demolition contractor and enabling 
confident resale into new projects. Putting this in 
place becomes the main concern of the project 
that follows.
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Step 1—Examples for different circular strategies

The process explained in Guide 1 Value chain design, development & innovation serves to map the 
current as well as the desired circular flows: resources, value, energy (if needed) and, of course, 
information flows—who moves what, who benefits, with which evidence. This shared picture is then 
examined through the lens of recurring tensions—Individual vs. Collective Interest, Robustness vs. 
Adaptability, Concentration vs. Distribution—so that real bottlenecks surface. This enables targeting the 
highest-leverage frictions rather than symptoms, to guide value chain design and improvement. For our 
four circular strategies, we illustrate below what insights can be used to kick-start the development of 
new data and information sharing infrastructures. See for more detail on the analysis Guide 1.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel 
waste into feedstock for floor tiles.

Current undermining tension—Individual vs. 
Collective Interest: Each actor optimizes for 
self-protection. Suppliers upload batch “proof” 
as PDFs with metadata at different levels of 
confidence and granularity (“rubber≈20%”), but 
keep sensitive fields—phthalates, heavy metals, 
formulations—offline. Recyclers list vague tags 
(“post-consumer, clean”); processors and buyers 
can’t verify claims such as “≤0.1% phthalates” 
or binder compatibility without seeing company 
secrets. Suppliers won’t risk exposure; buyers 
won’t risk non-compliance. Deals fail not for 
technical reasons, but because evidence can’t be 
shared selectively.

Improvement opportunity for data flows: Apply 
governed, selective disclosure. Certificates 
become machine-readable and are mapped to 
shared terms; sensitive results are issued as 
verifiable credentials with field-level, purpose-
bound access and audit trails. A supplier can prove 
“Batch X meets limit Y” without revealing spectra 
or recipes. Predefined queries check compliance 
across decentralized stores, preserving ownership. 
With accountable, granular sharing, trust rises 
and qualified recycled batches can flow—opening 
trade across sectors. It is decided to create this.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.

Current undermining tension—Individual vs. 
Collective interest (Take-back): At end-of-life, 
owners and demolition crews optimise for 
speed and lowest cost, while the OEM needs 
predictable, quality-controlled returns to plan 
remanufacturing. Crucial evidence—lot IDs, 
composition/binder, contamination risk, install 
zones, uninstall technician, custody—sits in PDFs 
or isn’t captured. With incentives split and proof 
missing, tiles are cherry-picked or downcycled, 
and OEMs can’t secure stable and reliable 
feedstock for remanufacturing.

Improvement opportunity for data flows: Use 
governed, selective disclosure. Issue machine-
readable passports with lot/composition/binder/
condition; attach verifiable credentials for “fit-
for-return” and chain-of-custody. Publish reverse-
logistics slots and price bands via decentralized 
pods (with commercials only to authorised 
parties). Predefined queries in planning tools 
auto-route eligible tiles to the OEM, aligning 
incentives and making take-back predictable and 
scalable. Enabling these solutions is what the next 
steps are about.
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Step 2—Define technical requirements: what do users need data for? 

	● Additional information
This is a more detailed description of the situation 
or context that may be added to allow you to 
understand the conditions under which a user 
story applies, and potentially any secondary 
consequences or constraints.

	● Data need
Here you place a description or list of the 
information that the user would need to complete 
the task described in the above. This can be a list 
of data sources needed, or if possible a detailed 
list of data points.

Functional and non-functional requirements
By capturing technical requirements in the form 
of user stories, the needs from a user perspective 
are captured together with additional contextual 
information that further adds to understanding 
the need and how to address it. These make up 
the (initial) functional requirements.

But apart from the functional requirements 
on the system there are also non-functional 
requirements, such as security, privacy, usability 
and performance. These should be considered 
too, as they are also essential for a smooth use 
and operation of the final system. In Onto-DESIDE 
we used grouped lists, where requirements were 
grouped under their respective heading, e.g. 
“security”, “usability” and so on. For example:

Security
	● It should not be possible to manipulate source 

data by an unauthorized actor.
	● It should not be possible to manipulate data in 

transit by an unauthorized actor.
	● The platform’s source code can be uploaded 

to a public repository (e.g. GitHub, Bitbucket) 
under an open-source license.

Elements of a user story
User stories contain a number of common 
elements and each story is assigned a unique 
identifier (such as a number). Below more on the 
template used.

	● As a [user]...
The "As A" part is to be interpreted from the 
perspective of a certain actor or role that 
needs to perform an action. For example: you 
could examine the role of a building owner, a 
deconstruction company or a recycler, but also 
detail it further to represent specific roles within 
those organisations, such as an architect or a 
purchasing agent.

	● … I want to [do something]...
The following "I want", is a detailing of what 
needs to be done. For example, when dealing with 
information flows: one actor may be interested in 
understanding what options for treatment of a 
broken product exist, another may want to know 
how to dismantle something, and another may 
be interested in knowing the composition of a 
batch of materials. However, actions could also 
be concrete physical things that should happen, 
such as shipping a product, or melting a batch 
of raw materials. The latter may however be less 
relevant to the information sharing infrastructure, 
so try to keep the focus. 

	● … so that I can [achieve a goal].
The "So that" describes the intended result or end 
state after the action is performed. For example:
execute a repair, plan for processing and logistics, 
or make decisions on purchasing materials and 
planning production. Again, keep in mind that 
the focus is here on the value chain setup and 
execution, so goals should be aligned with the 
mapped flows from Step 1.

By capturing both what the system should 
do (functional requirements) and how it 
should perform in practice (non-functional 
requirements), user stories provide a structured 
yet flexible foundation for development. They 
make it easier for diverse stakeholders—business 
leaders, technical teams, and end users alike—
to work from a shared understanding, reducing 
the risk of misaligned investments or impractical 
solutions that hinder instead of help.

How to make user stories
The process of producing user stories needs 
input in the form of documented value chain 
information flows as described in step 1. In the 
previous step concepts such as actors, process, 
actions, and needs are described on a high level. 
These are further detailed in user stories as text 
using a structured format. 

Each user story is a specific expression of a 
distinct need or interaction and will therefore 
differ from others by focusing on the perspective 
of a particular actor, a particular task, and/or a 
particular information requirement. Therefore, 
creating a broad set of stories is encouraged, 
since diversity ensures that requirements are 
captured from all relevant viewpoints and that 
no critical gaps are overlooked. Documenting 
these stories also helps to surface assumptions 
and make implicit expectations explicit, which 
supports alignment across stakeholders. 

But as the number of user stories grows, there will be 
some stories that make more sense to be implemented 
before others. Prioritisation is not only about urgency, 
but also about logical sequencing—some stories may 
only deliver value once others are in place, while 
some serve as enablers for multiple others. Such 
dependencies should be noted in the stories. 

With the systemic insights from step 1 in place, 
the next task is to translate them into actionable 
technical requirements (step 2). This involves 
capturing the identified needs in the form 
of user stories, which describe in detail how 
different actors are expected to interact, what 
information should be exchanged, and under 
what conditions. These user stories serve as the 
requirements of the decentralised data-sharing 
infrastructure and its potential applications. 
Alongside functional requirements that specify 
system capabilities, it is equally important to 
capture non-functional requirements, which 
relate to aspects such as security, speed, and 
reliability.

Why user stories?
User stories are a tool used in software 
development that make complex requirements 
tangible and easy to communicate. Instead of 
long technical specifications, they are short, 
plain-language descriptions of what an end user 
wants to achieve and why it matters. The format 
is deliberately simple—“As a [user], I want to [do 
something] so that I can [achieve a goal]”—yet 
powerful in keeping the focus on outcomes rather 
than features.

The value of user stories lies in bridging strategy 
(where Step 1 offered insights) and implementation 
(from Step 3 onwards). They translate abstract 
system needs into concrete scenarios that reflect 
how people will actually interact with the system, 
ensuring that technical design choices align with 
business priorities and user expectations. In the 
context of decentralised data sharing, this could 
mean expressing requirements around how 
suppliers, manufacturers, or recyclers access and 
exchange information in ways that build trust and 
efficiency across the value chain.

Responsible role:      Developer.   Participants:      End users holding the needs.
End-
User:

Data 
Steward:
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Story: deconstruction-01

Depends on stories:
recycling-02, logistics-01, manufacturer-07

As a [user]: Deconstruction company 

I want to:… [do something]
To have detailed instructions on how to 
deconstruct and handle floor tiles so that they 
can be reused or used as recycled raw material in 
producing new floor tiles.

So that I can: … [achieve a goal]:
I can dismantle floor tiles in the correct way and 
plan for the correct logistics of them.

Additional information:
A deconstruction company is subcontracted 
by the building owner and will manage the 
deconstrution of the building part according to a 
contract. As part of this contract, different circular 
strategies will be considered.

Data need:
	● Structural information for locating equipment 

in a building
	● Data on installed equipment/components
	● Instructions on how to dismantle and handle 

floor tiles
	● Information on circular strategies applicable 

for the specific floor tile

User stories based on the use case examples
Based on the circular strategy examples in section 
two possible user stories using the Onto-DESIDE 
template could look like this:

Story: repair-05

Depends on stories:
repair-03, recycling-07, logistics-02

As a [user]: Building owner

I want to:… [do something]
To be notified when a piece of installed electronic 
equipment in my building is faulty and needs 
repair or replacement.

So that I can: … [achieve a goal]:
Investigate the status of the faulting equipment 
and initiate relevant actions to restore it to a fully 
functional state.

Additional information:
A facility management system is in place and caters 
for providing information about the building and 
its health. This system is the primary interface for 
the building owner in maintaining and acting on 
data related to the maintenance of the building 
and its components.

Data need:
	● Structural information for locating equipment 

in a building
	● Data on installed equipment/components and 

contact information to suppliers
	● Maintenance and repair information for 

installed equipment

Who to involve to make user stories
The work of writing user stories is a collaborative 
process between the stakeholders involved in the 
value chain and are preferably done together, 
in person, so that uncertainties and nuances in 
perspectives are discussed and agreed upon. It 
is important to make sure that the different user 
roles appearing under “As a [user]...” are actually 
involved in this process, so as to validate the 
needs and the understanding of the context.

User stories would most often be written by a 
developer or systems engineer, with end users 
describing their needs and how they should be 
achieved in the system. Additionally, there needs 
to be a prioritization in what requirements are 
most important and in what order they need to be 
addressed. To do this prioritization architectural 
needs as well as functionality needs have to be 
weighted against each other. This prioritization 
could be done by a senior developer or a systems 
architect, someone with the authority, overview, 
and experience to make the correct judgements.

Next steps
Next, these user stories will be the basis for further 
detailing data needs in Step 3. Step 3 focuses on 
cataloging what data is needed to meet the needs 
specified in the user stories. Additionally, the non-
functional technical requirements (together with 
the outcome of Step 3) will be used in step 4 as 
input to designing a suitable data sharing platform 
and in Step 5 to derive ontology requirements. 

> See also User Story Template:
www.ontodeside.eu
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Responsible role:      Data Steward(s).   Participants:      End users, to verify that data meets their needs.

Step 3—Build a data inventory: what data is available or could be collected

The hard part of building and maintaining such 
a data inventory is the human factor. That is: 
finding out which datasets are available to you 
and reaching a common understanding of what 
the existing data is about. In some cases also 
confidentiality of data can be a challenge, e.g. if 
even the presence of some data elements and their 
structure is considered confidential. However, 
the maintenance of such a data inventory can be 
done using a simple spreadsheet.

Review user stories
During the process, it may become clear that 
some user stories are not feasible because the 
necessary data is missing or cannot be accessed. 
In such cases, the user stories should be revised 
or marked as unresolved. These unresolved 
elements can be revisited in future iterations if 
new datasets become available. IMAGE

If the required data does not exist, the next step 
is to analyze whether it can be collected and 
captured, and if doing so would be worthwhile.

A living document
A data inventory is a living document: building it 
is not a one-time task, but an iterative process 
that evolves as new information becomes 
available. Any change in a dataset that is part 
of the inventory—such as new data elements or 
revised access policy, but also the creation of new 
datasets—leads to an update of the data inventory 
and to potentially revisiting the subsequent steps 
in this guide. By maintaining this iterative and 
structured approach, a data inventory remains 
accurate, useful, and aligned with project goals. In 
addition, it provides a reliable reference point for 
all stakeholders, reducing confusion and ensuring 
that decision-making is consistently based on the 
most recent information available.

How to build a data inventory
A data inventory is typically documented in a 
structured format, such as a spreadsheet as 
illustrated on the next page, to ensure consistency 
and ease of use. 
 
The process begins by taking each user story as 
input and answering the following questions:

	● What data is required to resolve a user story?
	● And: does this data already exist?

  
If the data exists, a description of the relevant 
dataset is added to the inventory. For each dataset, 
the following aspects may be documented: 

	● Location, format and access—Where is the 
dataset stored, in which format, and how can 
it be accessed?

	● Ownership and governance—Who owns 
the dataset, and what usage restrictions or 
policies are applied?

 
For each dataset, the data elements (e.g. columns, 
keys, or references) should also be described:

	● Definition: What is the meaning of the element?
	● Relevance: For which user story is this 

element relevant? 
	● Sensitivity: What is the sensitivity level of the 

element?
	● Access restrictions: What access restrictions 

apply? Who is allowed to see this data element? 
	● Data granularity: Can the raw value be shared, 

or only a derived or aggregated value?
 
This level of detail ensures that the data inventory 
not only supports technical implementation but 
also complies with governance, security, and 
privacy requirements.

Once the information needs are clear, a data 
inventory is needed. This inventory establishes 
what data is available, which actor has the 
needed information, what restrictions on sharing 
it with others exist, and in case no data exists: 
could it be collected, how, and by whom? This 
step may also result in revising the requirements, 
since some of them may be unrealistic in light 
of the data collection they entail, or because of 
restrictions on data access. 
 
What is a data inventory
During the previous step, the data needs 
surfaced. However, it is hardly ever the case that 
the information you need perfectly matches the 
information you already have. To assess this, we 
first need an overview of the information already 
available—we need to build a data inventory.

A data inventory is a structured overview of the 
datasets you have access to and are relevant 
to address the user stories defined in Step 2 – 
Technical Requirements. These datasets can be 
internal or external, private or public, and are 
typically heterogeneous. That is: they typically 
encompass a variety of data formats (e.g. JSON, 
XML, CSV) and data structures (e.g. different 
database table schemas for different applications), 
often requiring careful analysis and management 
to ensure consistency and usability across systems.
 
This structured overview allows you to 
understand which informational gaps exist in 
your organization, and allows you to prioritize: 
either focussing on filling those gaps to cover all 
user stories, or focussing on the user stories that 
can be fulfilled with the existing set of data at 
your disposal, thereby guiding efficient resource 
allocation and more informed decision-making 
throughout the development process.

Data 
Steward:

End-
User:

Figure: Example of a data inventory.
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Step 4—Enable data sharing: how and by/with whom?

More about Solid

History
Solid servers were initially 
presented as a way to 
manage personal data. Solid 
used to be short for Social 
Linked Data, for connecting personal data across 
the web. However, the Solid protocols have never 
been tailored only to personal data. Within Onto-
DESIDE, we found that Solid also lends itself very 
well to industry and governmental data, making 
it a strong candidate for supporting the kinds 
of information exchanges described in the user 
stories.

More about Data Spaces
Readers that have heard about Data Spaces 
might wonder how Solid and Data Spaces are 
connected: the technologies and methods put 
forward by Data Spaces organizations such as 
IDSA or Prometheus-X mostly focus on domain-
specific governance of data sharing. When going 
through their documentation, you will notice a 
lot of emphasis is put on how to create contracts 
between parties, to make sure data access 
rules are well established. Solid focuses on the 
technical protocols needed to let data flow easily 
between parties, once those data access rules 
are in place. As such, Solid and Data Spaces are 
complementary, but not yet fully integrated. 
Within this training guide, we will not go into 
detail how data access contracts are put in place, 
but focus more on how we can technically adhere 
to these contracts.

Sharing data: servers, workspaces and pods
Within a Solid server, multiple workspaces can 
be defined. Each workspace is informally called 
a Solid pod. When you create an account on 
a Solid server, you receive an account ID in the 
form of a URI, called a WebID. Access rights are 
then managed by linking WebIDs to specific data 
resources and defining the type of access each 
account has (e.g. read-only, read-and-write, 
or administrator). Data can be partitioned into 
resources, giving you full control over storage, 
grouping, and sharing. The next step is choosing 
the infrastructure to host your Solid server.

Decide on the infrastructure
To make use of the Solid protocols, a Solid server 
is needed. As with any Software-as-a-Service, the 
strategic ‘Build, buy, or rent’ choice arises:

	● Build: Develop software or technology from 
scratch, creating a highly customised solution 
and potential competitive advantage. This 
requires significant time, skill, and resources 
but allows full tailoring to specific needs.

	● Buy: Deploy an existing implementation on 
your own infrastructure. This offers quick 
setup but limited customisation. Deploying an 
open-source implementation lowers the cost 
but comes without commercial support.

	● Rent: Use a cloud or SaaS solution, paying 
for access and usage. This option provides 
flexibility, scalability, and reduced upfront 
investment, but may involve vendor lock-in.

For an initial pilot, we suggest using the MIT-
licensed Community Solid Server7, as this shows 
the web service’s capabilities without requiring 
major effort or investment. For setup instructions, 
see the tutorial linked from our website. 

a more resilient ecosystem where information 
can flow consistently across organisational 
boundaries without costly custom solutions. For 
businesses, this means faster onboarding of new 
collaborations, reduced IT maintenance, and a 
clearer path to scaling pilots.

Within the Onto-DESIDE project, the Solid protocols 
have been applied to support decentralised data 
sharing. These protocols are a set of open standards 
(based on the RESTful architecture style for web API 
design) that specify how secure but granular data 
sharing can take place on the web. In essence, they 
define the requirements of a Solid server: how a web 
server should respond to data updates and request 
calls, and how this aligns with authentication and 
authorization protocols so that data can be shared 
securely. Think of a Solid server as a type of Google 
Drive or Dropbox, but then for individual data points 
instead of documents, with sharing across platforms.

In practice, this means that one or more Solid 
servers, all using the same API, can scalably 
manage the pieces of data to be shared with 
other (internal or external) parties. Deploying a 
Solid server allows to more easily adhere to the 
same standards, making it easier to integrate 
your own data with that of your partners—and 
vice versa. Because each organisation maintains 
its own Solid server, the approach naturally 
supports decentralised data sharing: every actor 
keeps control over its data while still enabling 
interoperability across the value chain. 

Solid is a compelling infrastructure choice because 
it combines control with openness, aligning 
technical efficiency with business trust. It provides 
the foundation for scalable, trustworthy data-
sharing ecosystems that transform collaboration 
into lasting competitive advantage.

This step builds on the user stories and the outcomes 
of the data inventory outlined in the previous steps. 
That is: now that you know what data is available 
or will be generated, and you know when and how 
actors want to exchange this information, and 
under what conditions—you are ready to decide 
what kind of data sharing infrastructure is needed. 
Translating these needs into practice requires 
more than internal IT systems—it calls for data 
infrastructure that supports secure, scalable, 
and standardised sharing across organisational 
boundaries. Next, we focus on what is needed 
specifically for decentralised data sharing.

Why additional data infrastructure is needed
Data can relatively easily be shared internally 
using existing organisational deployments, e.g. 
by providing access to an internal SAP system, or 
maintaining datasets on an internal FTP server. While 
sufficient within one company, these approaches 
break down when collaboration extends to 
multiple organisations. Getting updates of different 
datasets—which, as we’ve seen in Step 3, are likely 
to encompass various data formats—would require 
fetching updates via each different protocol and 
manually integrating those different changes. This 
is time consuming and easily results in errors.

The web and the Solid protocol
Instead, we can make use of the Solid protocol, 
which builds directly on the global document 
sharing infrastructure of the web. By exposing 
data through web APIs in a controlled manner, 
information becomes globally accessible while 
relying on open standards and widely available 
tools, often at little or no cost. This move from 
closed systems to web-based infrastructure 
makes cross-company data exchange feasible at 
scale. It simplifies technical integration, lowers the 
barriers for new partners to connect, and creates 
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(B) Middle-of-life: repair
What: Repair of audio system through 
access to reliable spare parts & instructions.

Step 2 & 3—Requirements & Data Inventory: To 
enable sharing of repair options and instructions, 
OEMs and building-owner representatives make 
user stories—for example: “As a building owner, I 
want replacement-component options for a failed 
part, with costs and repair instructions, so I can 
decide between repair and full replacement.” 
The OEM’s data steward compiles a repair-asset 
inventory (manuals, speaker-module BOM, parts 
catalog, compatibility matrix, firmware notes, 
service logs), noting format, ownership and gaps. 
Certificates (safety, EMC, RoHS/REACH, recycled 
content) are registered, though few confirm 
post-repair performance. Sensitive fields—e.g., 
regulated-substance levels, raw diagnostics and 
pricing—are flagged for restricted, purpose-
bound access.

Step 4–Enable Data Sharing: To share compliance 
data securely, the OEM chooses a decentralised 
setup using Solid pods on the Open Circularity 
Platform (OCP), which lets customers and 
suppliers retrieve data in a standardised way. The 
OEM can control access to each data element, 
ensuring only authorized actors view it. As a 
large company with many subsidiaries, the OEM 
hosts its own Solid server and offers this service 
to subsidiaries. They also maintain a registry of 
suppliers’ pods to enable federated queries.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel 
waste into feedstock for floor tiles.

Step 2 & 3—Requirements & Data Inventory: 
On a digital marketplace, the interior outfitter 
struggles to source recycled materials because 
the materials processor’s data is inaccurate and 
inconsistent. Certificates arrive as PDFs and 
spreadsheets with varying terms. The actors first 
meet to clarify their needs, writing user stories that 
specify which data is needed, in which situation, and 
for what purpose.

The materials processor’s data steward then 
builds a data inventory, cataloguing existing data, 
formats, ownership, gaps, and sensitivity. Most 
certificates list recycled content and composition; 
few include verified environmental impact scores. 
Toxic substance data is highly sensitive and only 
shared with trusted partners. A mitigation is to 
share thresholds only (as in REACH) and apply 
granular access restrictions.

Step 4—Enable Data Sharing: The data steward 
and marketplace developer enable data sharing 
by adopting a decentralised setup with Solid 
pods,based on the Open Circularity Platform 
(OCP), giving suppliers control over sensitive data. 
Fields needing protection get access rules. The 
processor subscribes to a hosted Solid service, 
configures access-controlled data fields, and 
registers its pod on the marketplace.

(C) End-of-life: reuse
What: Reuse and resale of a door for use 
in other building projects.

Step 2 & 3—Requirements & Data Inventory: The 
intermediary (marketplace owner) consults with 
other actors, buyers and sellers of reused building 
elements, what their data needs are, and they 
formulate a set of user stories. The intermediary's 
data steward then helps the building owner to 
create a data inventory for reuse-relevant data on 
doors, including sources such as pre-demolition 
audit (measurements, condition grades), 
installation history, certification (fire/acoustic), 
images, location and planning constraints. For 
each dataset, they record format, location, owner, 
update cycle, sensitivity and access rules. They 
flag sensitive fields (exact addresses, pricing) 
for restricted sharing, and log information gaps 
(e.g., missing hinge). This inventory clarifies what 
information exists, what is missing, and which 
additional data can be produced.

Step 4–Enable Data Sharing: The intermediary's 
developer sets up a Solid pod per building owner, 
as a part of an Open Circularity Platform (OCP) 
setup, so owners retain control over their data. The 
building owners can then share door passports, 
each in their own Solid pod, exposing some data 
publicly, and restricting access to commercial and 
location data to selected buyers. This enables 
secure, scalable data exchange across actors.
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Step 2, 3 and 4—Examples for different circular strategies

As shown, Step 2 supports with clarifying the technical specifications. Step 3 involves creating a data 
inventory by identifying available datasets, their formats, ownership, and access restrictions. It helps 
clarify what data exists, what is missing, and what can be collected. Step 4 focuses on enabling data 
sharing by setting up decentralized infrastructure that allows secure, controlled exchange of standardized 
data across actors, while preserving data ownership and confidentiality. Here, we briefly illustrate—for 
each of the circular strategies introduced earlier—how the steps play out to reach the strategic objectives 
in each case.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.

Step 2 & 3—Requirements & Data Inventory: 
First, the OEM consults owners, collectors and 
representatives of the demolition sector to map 
data needs for automating the take-back process. 
They capture user stories, e.g.: “As a building 
owner, I want to know whether the OEM offers 
a take-back system, and under what conditions, 
so I can choose the right end-of-life option.” The 
building owner’s data steward compiles a data 
inventory of installed components (materials 
per room with m², tile-type installation dates, 
installation specs such as binder/adhesive and 
underlay, batch IDs, removal methods). The OEM 
likewise inventories take-back data: needs, criteria 
and pricing. For each dataset, the inventory 
records format, owner, update cycle, provenance 
and access rules. Sensitive fields—such as exact 
locations and contractor rates—are flagged for 
restricted access.

Step 4–Enable Data Sharing: The building owner 
decides to publish his data on a Solid pod, using 
a hosted service providing access to the Open 
Circularity Platform (OCP), rather than transferring 
it to a central database of an intermediary. The 
OEM sets up their own OCP Solid server to host 
their pods, to hold data of various products. This 
way they both retain control over their data, 
sharing selected data elements with other actors.
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But anything can be de�ned di�erently:

material properties, certi�cation, 
component & product status, 

warranty, repair & refurb history,
 partner processing capabilities, 

timing, quantity, location,
etc, etc, etc…

I see... I see...

When looking at 
 the world ...

 
... di�erent things may

be important to us

Step 5—Ensure semantic interoperability: ontologies

SHACL9–but this will not be covered in this guide.

To identify and link to ontologies OWL makes use 
of the namespace notion, which allows us to give 
an identifier to the ontology as a whole, and then 
extend that namespace to identify its elements. 
Normally the URI of the ontology is also its URL, i.e. 
the location where it can be found, as well as the 
namespace for its content. A URL can represent 
a public address on the web, or for instance, a 
location on an intranet. However, to facilitate a 
shared model for interoperability between actors, 
ontologies need to be accessible by the actors that 
use the data described by the ontology. 

The language is based on other common web 
standards, e.g. using URIs to identify things so 
that we can point to concepts and relations in the 
ontology from anywhere on the web. The ontology 
is stored in a file that should be accessible over 
the web, so that the URIs identifying its concepts 
and relations actually resolve. To allow for 
describing a domain in detail, the language allows 
to express axioms that can be used for automated 
reasoning. While reasoning is a powerful feature, it 
also adds complexity. OWL provides the possibility 
to derive new fact and check consistency, but it is 
not a constraint language. For validating data, and 
verifying constraints, other languages exist, such as 

requires in-depth investigations into not only the 
data itself but also the processes of using and 
producing the data. Digital technologies can help 
to support this process, e.g., by allowing us to 
describe and capture the meaning of our data in a 
precise and formal way—understandable by both 
humans and machines. This is where standards 
and ontologies become essential.

Achieving semantic interoperability
To move from ad-hoc interpretation to shared 
meaning, data should be described using 
recognised standards and ontologies. We 
recommend relying on de facto standards within 
your field, and complementing them with the 
Circular Economy Ontology Network (CEON), 
developed in this project, to support cross-
domain alignment. CEON provides a common 
vocabulary that bridges differences between 
domains, making collaboration smoother and 
more reliable.

Ontologies
An ontology is a formal model describing a domain 
of interest. It offers a way of capturing meaning, 
i.e. defining concepts and relations in the domain 
that can be used to describe our data, so that we 
precisely know the semantics of it. Commonly 
such ontologies are called “domain ontologies”, 
to separate them from models trying to capture 
the nature of the whole world, or application 
ontologies that may be specific to one particular 
system or type of application. 

In order to create and share an ontology, and to 
make it formal and precise so that it can not only be 
understood by human users, but also by systems, 
we need a formal language in which to express 
the ontology. The most common language used 
today is a web standard, OWL8, developed for 
expressing and sharing ontologies over the web. 

Before data can be shared through data 
infrastructure, e.g. Solid, it often needs 
preparation. To achieve true interoperability, 
data must not only be technically accessible 
but also semantically consistent. This means 
describing it with recognised standards and 
ontologies. We recommend relying on de facto 
standards within your field, complemented with 
the Circular Economy Ontology Network (CEON) 
developed in this project, to ensure cross-
domain alignment. 

The role of interoperability
Interoperability can exist at different levels, and 
basically means that entities can work together. 
In a technical ecosystem, interoperability usually 
means that a set of systems can operate together 
without requiring extensive human effort in the 
day-to-day processing and exchange of data. 
Achieving this requires looking at both technical 
and semantic interoperability.

	● Technical interoperability ensures that the 
form (the syntax) of data can be exchanged. 
For example, agreeing on what file formats a 
system should import or export, or aligning on 
the API structure for web-based systems.

	● Semantic interoperability goes further by 
ensuring that the meaning of the exchanged 
data is shared and understood. Even if two 
systems agree on a common format—e.g., CSV 
files or an API with certain parameters—there 
remains the question of what the data values 
actually represent. Semantic interoperability 
means knowing that we use the same 
meaning for the concepts exchanged, and 
recognising when data is incompatible.

In general, technical interoperability can be solved 
by building file format converters and publishing 
API specifications. Semantic interoperability 
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Figure: Why are ontologies important?
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Namespaces and links between ontologies
Agreeing on one single naming scheme, or one 
single ontology, makes things easier for data 
exchange within a domain. However, when 
considering cross-domain scenarios this may 
simply not be feasible. Each industry doman has 
its own formats and standards, and in some cases 
already their own ontologies. So instead ontologies 
can support mapping between standards and 
ontologies, because ontology languages, such as 
OWL, are built for the web. So just as we can create 
links between web pages, we can also create links 
between ontologies, and even between single 
elements and definitions inside the ontologies. 

Since all ontologies have unique identifiers, 
which can be resolved on the web, we can point 
to any ontology on the web from our data. 
This means that for instance, the “building A” 
in our first example on this page, may reside 
in a dataset on our company server, while the 
ontology containing the “Building” concept may 
be published in an entirely different location on 
the web. To make this work, we need to provide 
the “address” of each element we introduce, 
normally a URI. To make things more readable 
in a file, or an illustration like in this guide, we 
can shorten the URI to what is called a prefix - a 
short name for the longer address. In the example 
below you see two concepts representing a room, 
from two different ontologies - the “ex:” and the 
“wd:” are prefixes, which in the ontology file then 
has to be connected to the correct URIs. 

Attributes
Another type of relation is attributes. An attribute 
connects instances of a concept to literals, i.e.. 
data values. The actual data values are not part of 
the ontology, but in the ontology we express what 
attribute relations (called datatype properties in 
OWL) exist and the datatypes the data values 
have. Below we illustrate two datatype properties 
of a “Building”, one that can hold string literals 
representing a building identifier, and one 
representing the number of floors as an integer.

Axioms and reasoning
So far we have only seen the features of OWL 
that allows us to “name things”, i.e. to create a 
vocabulary for types of things and relations in our 
datasets. However, ontologies can be more than 
vocabularies. OWL is a logical language, which 
means that it allows axioms to derive new facts 
from existing data – a powerful feature, but also 
complex. For instance, we might want to classify 
elements in a building as potentially “recyclable” 
if they meet certain well-defined criteria. In the 
naïve example below we classify doors as being 
wooden if they are composed of some wood 
material, which illustrates such capabilities.

Relations between concepts
In an ontology we also want to express what 
possible relations may hold between instances 
of concepts. These are called object properties 
in OWL. The example below shows two concepts, 
“Building” and “Room”, and a relation “hasSpace” 
that can connect instances of these concepts. In 
OWL, properties are first class citizens that can 
exist independent of any concept, but commonly 
we express their intended usage through some 
axioms in the ontology. This could be a restriction 
on the concept, or domain and range restrictions 
on the object property, which (in Grafoo) is 
illustrated by connecting the boxes.

Lexical representations
Ontologies also help us to separate the lexical form 
of a concept, i.e. the different terms that can be 
used to refer to a concept or its instances, and the 
concept itself. Each box and arrow in our figures 
will have a unique identifier in the ontology file, 
independent of what label we give it. Thus this 
separates a concept definition from its naming, 
allowing us to, for instance, express synonyms, 
and to represent how different languages name 
the same concept. It can also be used to express 
different naming schemes, e.g. how different 
standards name the same concept differently. 
Below you see, the “Room” concept translated 
into English, French, Swedish and German:

An example of an ontology
To understand and manage the ontologies you 
need in your value chain, it might be useful 
to first get a better understanding of what 
concretely can be expressed using ontologies. In 
this section we consider a simple example of an 
ontology consisting of just a few concepts and 
relations between them, to exemplify some of the 
constructs in the OWL language. The illustrations 
here are shown in a notation called Grafoo, 
though ontologies can also be visualised in other 
notations. However, an ontology is fundamentally 
a set of machine readable logical axioms, not 
merely a graph or diagram. The axioms are 
stored in an ontology file, using a syntax such as 
Turtle (see more details in Step 6) to make them 
understandable and usable by applications.

Concepts 
The core element of an ontology is the concept. 
In OWL concepts are called classes, but since 
this is easily confused with the class notion in 
programming, we mainly use the term concept. 
A concept can be viewed as representing a set 
of things, its instances. So one way to view the 
concept “Building” is that it represents the set 
of all buildings. Another point of view is that it 
represents a type, i.e. it is a category that can be 
used to classify instances. The example below 
shows the concept “Building” and an instance 
of building, i.e. a specific concrete building, 
which we for the sake of the example have called 
“building A”. The relation rdf:type is a built-in 
relation, coming from the RDF language10 (as 
indicated by the prefix “rdf:”), that is used to 
connect instances, i.e. data nodes to concepts.

building A

Building

RoomBuilding

Lexical

Room

Attributes

Building

xsd:string

xsd:int

ex:Room wd:Q180516

Axioms

WoodenDoor Door and (hasComposition
some (compositionOf Wood)
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Next steps in ontology support
With semantic interoperability understood, the 
task is to assess needs and determine ontology 
support in your case.

	● Ontology requirements and inventory (5a): 
Identify technical requirements and review 
existing ontologies, including CEON from 
Onto-DESIDE. Carefully assess their coverage 
and fit for purpose.

	● Ontology extension (5b): If CEON or other 
ontologies do not cover all requirements, 
extend them to meet specific needs.

	● Ontology alignment (5c): Where multiple 
ontologies are in use, connect and align them 
to ensure consistency and interoperability.

Outcome: Step 5 delivers an ontology requirements 
specification, together with a network of extended 
and aligned ontologies, designed to support your 
value chain’s data sharing infrastructure effectively.

Why does CE need ontologies?
CE inherently means collaboration, and 
collaboration means the need to understand 
each other. CE also implies complexity—complex 
systems that need to scale across organisations, 
material flows, and time. Most of our current IT 
systems have not been built for such scenarios, 
but targets the internal processes of the 
organisation. Many also have implicit information 
models and system-specific data formats that are 
hard to explain and share with others. To some 
extent standardisation has aimed to alleviate this 
problem, but usually on a per-industry domain 
basis, whereas CE goes across domains. In such 
a scenario it is important to make definitions 
and assumptions explicit, and to be able to 
map between a plethora of different standards, 
formats, and models, and make domain 
assumptions explicit to others—also to other 
technical systems. This is where ontologies play 
a crucial role! 

Using an ontology for data access
Another use of an ontology is to express queries 
over data. As you will read about in step 8 of this 
guide, expressing queries over data needs to be 
done using some vocabulary, i.e. we need to know 
what we can ask for. In this guide we assume that 
all datasets are actually transformed into RDF 
(as discussed in step 7), but even if this was not 
the case we could express queries based on the 
ontology and then create a mapping to the data 
sources using their own specific schemas.

Using an ontology as a data schema
An ontology can also be used as a schema for 
expressing data, i.e. as the structure of a graph 
dataset. If we would like to create an integrated 
knowledge graph, for instance, containing data 
from different data sources. Then the ontology 
could be used as the schema of that knowledge 
graph. But it is important to keep in mind that this 
is just one possible use of the ontology, and which 
use is right for you depends on the decisions 
made in the other steps of this guide. 

Example data, illustrated as a graph (knowledge 
graph) with individuals as dots, representing 
instances of the building and room concepts 
illustrated earlier, and values for the two datatype 
properties in the previous example can be seen 
below:

Different uses of an ontology
An ontology is in itself merely a model of some 
domain, i.e. making it explicit how that domain 
views the world, how it defines different concepts, 
and how the concepts are related. This means 
that an ontology is NOT in itself a data format, 
it is NOT even a schema for creating data in any 
format. As such, an ontology does not prescribe 
any format or any structure of the data. It can 
simply be used as a terminology (or mapping 
between different terminologies), providing 
a description of the domain. Since ontology 
elements are uniquely identified by URIs in OWL, 
this means that descriptions do not have to reside 
in the same place as the data, but data can link to 
ontologies published elsewhere.

Using an ontology as a vocabulary
An example of this usage could be to apply an 
ontology to define the keys (names of attributes) 
in a JSON structure, using the JSON-LD syntax. 
In this example, see image below, the @context 
key identifies that it is the GS1 Web Vocabulary 
(an ontology, available under URI https://ref.
gs1.org/voc/) that contains the definitions of 
the attributes “globalLocationNumber” and 
“organizationName” that are used to describe the 
entity identified by the @id URI, which this JSON 
document is about.

Data schema

building A 3_345

RoomBuilding

1

2 3

A shared 
ontology

That allows for 
transforming data

Which enables the 
exchange of data

Figure: How ontologies work—they provide a shared language for organising data.Figure: A data schema example.Figure: A JSON example.
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Step 5a—Ontology Requirements and Inventory

we have developed an ontology network specific 
to CE needs, called CEON. It is modular, to allow 
reuse and extension of the single modules, and to 
make it more flexible to varying needs. 

To map the CQs to the CEON ontology network, 
the ontologies can be loaded into a tool for 
visualisation and editing (such as Protégé), or 
the online documentation can be used. Entering 
the URI of the ontology module in a browser 
window will normally take you directly to the 
documentation page, where you can see a 
visualisation of the ontology, as well as lists of 
all its classes (concepts), properties (relations) 
and their natural language representations 
(labels) and definitions (comments). For each CQ 
you can search for the specific terms included 
in the CQ to check whether they are actually 
present in the documentation, and may map to 
classes or properties. However, in most cases 
the terminology of your specific requirements 
may be too specific compared to the one used 
in the ontology modules, hence, you will need 
to either search for broader terms, or make a 
manual assessment by reading through the lists 
of concepts and relations and their definitions. 

In some cases, the ontology may need to be 

Requirements can also be based on data that is 
already available, and processes that are already 
in place, e.g. as discovered in the data inventory 
step. Studying such existing data may yield 
additional CQs representing typical queries that 
are already today used to retrieve the data. Or 
you may simply use sentences to list the “entities” 
that exist in those datasets, and their associated 
attributes. But also make sure to capture any 
hidden assumptions, e.g. units of measure that 
are not explicit, or whether there is a need to also 
capture the provenance of the data, apply change 
tracking or not, etc. 

The output of the ontology requirements 
engineering process should be an ontology 
requirements specification document. Take care 
to give CQs identifiers so that it is easier to refer 
to them, and to indicate when they potentially 
change. CQs should also be verified with the 
actors identified as holding those needs, and may 
have to be prioritised if there is a long list of them.

Understanding CEON
Once requirements are in place, the next step is to 
identify to what extent these are already solved in 
existing ontologies. In the Onto-DESIDE project 

ontology targeted at the construction sector, or 
even “What is the fraction of a specific substance 
in a specific physical object?” for a more generic 
ontology about materials. If expressing questions 
feels awkward, the requirements can also be 
expressed as simple sentences, specifying what the 
ontology needs to cover, such as “Physical objects 
and their material content, expressed using different 
metrics with associated units of measure.”

In addition, CQs may represent reasoning 
requirements, i.e. things that should be derivable 
based on the ontology or its associated data, 
rather than merely “retrieval questions”. For 
instance, a CQ like “What is the best end of life 
scenario for a certain used product?” will probably 
not imply a “lookup” of this in a database, but 
rather deriving different suggestions for end-of-
life scenarios based on a set of parameters of the 
product in question. Such CQs may spark valuable 
discussions on the scope and task of the ontology. 
To what extent should this be derivable through 
“rules” expressed using the ontology, and to what 
extent should this be a manual task, or a task of 
an associated recommender system perhaps? 
Thus in some cases you will encounter needs that 
first seem to be ontology requirements, but in the 
end may result in other kinds of requirements, 
that may not be solvable by the ontology itself 
but rather requires a certain software solution 
or application to be built on top of the data. 
Adding lots of axioms in your ontology will make 
it complex, both for humans and machines. So be 
aware that this should be clarified before starting 
to build extensions to the ontologies, to avoid 
having overly complicated models that in the end 
still may not solve the need you actually had—
ontologies do not do magic, they are merely 
models of the domain, and documentation for 
your data!

It is time to figure out what ontology (or 
ontologies) we need in the setup of our 
particular value chain collaboration. Based on 
the output of steps 1-3, i.e. an understanding of 
the value chain, its actors, needs, and the data 
required to make the intended flows happen, 
as well as the inventory of what data exists and 
where, it is now time to see how all this maps 
to an ontology. To have more detailed guidance 
in the following steps, you may want to look 
further into a specific ontology engineering 
methodology, such as LOT11, and also think 
about how these steps will interface with your 
existing information management and systems 
development practices.

Ontology requirements
In step 2 we determined the overall system 
requirements of the data sharing infrastructure of 
the value chain, and in this step we figure out what 
this means in terms of ontology requirements. 
Ontology requirements are often expressed as 
Competency Questions. Competency Questions 
(CQs) are questions that should be possible to 
answer using the ontology, or data described 
using that ontology, and should be based on 
the information needs of the actors in the user 
stories. You could view it as listing what questions 
different users and actors in the value chain 
would be asking the overall distributed data of 
the value chain in specific situations. It is usually 
a good idea to express CQs in generic manner, i.e. 
without mentioning explicit data examples, but 
rather types or categories of data. For instance, 
while “What is the percentage of ALU content 
of this window construction?” would be a valid 
CQ, a better one, making the scope and level of 
detail of the intended ontology more clear, would 
be “What is the weight percentage of a specific 
substance in a certain building element?” for an 

Data 
Steward:

End-
User:

Data 
Steward:

Figure: Analysing ontology requirements 
and inventory—process overview.
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CEON. In this case, it is good to first check whether 
CEON also already provides an alignment to such 
ontologies. In many cases, this may actually have 
been considered already. For instance, CEON 
contains references to GS1 Web Vocabulary, as 
well as the EMMO upper ontology for materials 
modelling. To allow flexibility these links are 
mainly included as “see also” references in the 
ontology modules, rather than explicit relations, 
while also a number of alignment modules are 
available. When checking if CEON already aligns 
with your ontology of choice, check for “see 
also” annotations, and review the alignment files 
available in GitHub. 

Decision point - Is the ontology sufficient?
After this step, you should now make a decision 
how to proceed, depending on your assessment 
of on one hand the coverage of CEON and related 
ontologies over your CQs, and on the other hand 
if there are additional ontologies you need to 
align to. 

If all your CQs are sufficiently covered by CEON, 
or CEON and ontologies where alignments are 
already provided, then you can proceed to step 
6. If there are parts of your CQs that are not 
sufficiently covered, and you think extensions to 
CEON, such as adding more specific concepts, or 
extending the scope, are needed, then you should 
consider step 5 b – ontology extension. If you also 
would like to connect additional ontologies to 
CEON, or your extensions, that are at the moment 
not aligned with CEON, then consider also Step 
5c – ontology alignment.

studied more in detail to make sure that a CQ 
is fulfilled, e.g. checking whether there are also 
sufficient properties connecting the concepts 
found, and that their definition (also in terms of 
domain and range) match the usage you have 
in mind. This can be done through the ontology 
visualisation, or by opening the actual ontology 
file in a tool of your choice.

For example, consider the case where you are 
the manufacturer of a floor tile systems, and 
your CQ reads “What is the material composition 
of a specific floor tile?”. “Material composition” 
can be found in the ontology documentation of 
the materials module of CEON, while there is no 
concept representing “floor tiles” in any module. 
Instead, there is a general concept representing 
“products”, where in this case the “floor tile” is 
your specialisation of this concept. Additionally, 
you check the ontology visualisation to make 
sure there is a connection between products, and 
materials. Hence, the conclusion would be that 
parts of the CQ is directly modelled through the 
materials module, while another part requires 
a specialisation of the products module, but it 
is possible to express their connection through 
existing classes and properties. 

After completing this, you will have an 
assessment for each CQ, stating whether they 
are (a) directly modeled by CEON already, (b) 
need a specialisation or extension of CEON to 
be satisfactorily modelled, or (c) seems to be 
completely out of scope of CEON, or are modelled 
or defined in an incompatible way in CEON. 

Other ontologies?
In some cases you may already be using other 
ontologies, or there are other ontologies already 
built for a specific concept that goes beyond 

Does this 
work...?

Can we also 
include...?

Figure: A developer discussing with an end user to verify the requirements.
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Step 5b—Ontology Extension

almost all items, while other aspects, such as the 
maximum point load a tile can withstand makes 
much more sense to model at the tile level (or a 
potential intermediate level of built elements). 

Other benefits include the possibility to include 
more specific relations or restrictions that apply 
only to the subconcepts. For instance, some 
characteristics, such as length, width, height, 
and material composition, may be relevant for 

mainly as subconcepts or sub-relations of already 
existing concepts and relations. While a general 
extension may also add concepts and relations 
completely independent of existing concepts and 
relations in the extended modules. 

The benefits of an extension, rather than modelling 
something from scratch, is that the taxonomy can 
be used to reason over and query data regardless 
of at what level in the taxonomy it is described. 
Consider a dataset that is described using the 
core CEON module, describing a certain object 
as an item of a certain product type (see top of 
the figure to the right). Another dataset may use 
a more specific ontology that describes another 
object as a tile of a certain floor system product 
(middle part of the figure). When querying over 
both these datasets, asking for all tiles will only 
return the data tagged with the more detailed 
concept, i.e. only the result from dataset 2, while 
asking for all items will return both the items 
described using the generic concept, but also 
everything tagged with the subconcepts, such 
as “tile” (bottom of the figure). Hence, we use 
the semantics of the subclass relation between 
concepts, to allow us to seamlessly integrate 
data that is described with ontologies at different 
levels of detail and granularity – as long as they 
both rely on the same core concepts.

Given that the assessment of CEON and other 
existing ontologies resulted in the conclusion 
that some extensions are needed, a structured 
approach to such extensions is necessary. In this 
guide we only briefly describe the steps needed 
to create an extension of a CEON module. If a 
completely new ontology has to be created, 
from scratch, we recommend to study ontology 
engineering methodologies more in detail, 
and set up a suitable plan for performing the 
ontology development project based on that. 

Why specialising an ontology?
Our focus here is on ontology extension, i.e. 
specialising and potentially slightly extending a 
specific CEON module, based on requirements 
identified in the previous steps. Specialisation 
means to add more specific concepts and 
relations that better describe our data, i.e. adding 
domain-specific modules as illustrated in the 
figure to the right, rather than the generic cross-
domain concepts in the core CEON modules. The 
motivation for adding such concepts and relations 
can be both purely technical, i.e. the need to 
further specify the concepts so that certain 
consistency checking or inferences can be made, 
or also a matter of communication. 

Consider CEON concepts such as "product" and 
“component”, which can include multiple kinds 
of things depending on the industry domain, and 
also the perspective of the organisation where 
the data originates. In the case of our running 
examples (A-D), we would rather like to have a 
more detailed taxonomy of products, such as 
“building element”, “door” and “floor system”, as 
well as more detailed component concepts, such as 
“floor panel” and “floor pedestal” as components 
of a floor system. The key idea of specialisation 
is that the new concepts and relations are added 

Product module

Electronics
Products

Electronics
Products

Specialises Specialises

Item Product

Tile_id1234 FloorTile_type_y

Item Product

Tile_id5678 FloorTile_type_z

Tile Floor System Product

Data 
Steward:

Responsible role:      Developer.  Participants:       Data Stewards + End Users to verify steps taken by developer.
End-
User:

Data 
Steward:

Figure: An example of extending an ontology with domain specific concepts.
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complex axioms also add complexity to the model. 
Both complexity in terms of understanding the 
model, so it becomes harder to use, extend and 
modify in the future—it is easy to accidentally 
introduce conflicts and unintended consequences 
in an ontology with many complex axioms. But 
also complexity in terms of the computations that 
are done using the ontology. 

For reasoning there are OWL inference engines 
already available, as general purpose software 
that allow you to derive the conclusions that you 
can draw based on the model and associated 
data. However, these reasoning engines will be 
slower the more complex the model is, and in 
some cases there may not even be guarantees on 
their termination. The same goes for queries that 
use inferencing as a pre-processing step, such as 
was the case of the tile example, where we first 
have to derive the full set of types (concepts) the 
tile belongs to, before the actual retrieval takes 
place. This is powerful, but time consuming. So 
carefully assess the need for such reasoning to 
take place, before adding too many axioms to 
your ontology extension.

Documentation and publishing
Once you finish your extension, make sure to 
properly document all the new elements by 
using rdfs:label for human readable labels, and 
rdfs:comment for human readable definitions 
and explanations of the concepts and relations 
added. Also document the ontology itself, by 
adding metadata to it, such as a version number 
(for keeping track of new versions when changes 
are made), author, and publisher etc. If the 
ontology is to be made publicly available, also 
include licensing information, for enabling its 
reuse by others. 

Design choices and tradeoffs
To make your additions reusable and maintainable 
also keep in mind that modularisation is beneficial. 
Hence, adding too many new concepts and 
relations into the same extension module may 
not be the best choice. Consider to divide the 
extensions into subsets, either by criteria that 
make sense to users, such as extensions that will 
be used for certain queries or certain applications, 
or layer the extensions so that their granularity fits 
certain datasets to be described by the ontologies. 

Other things to keep in mind is the tradeoff 
between being very detailed versus sticking with 
less detail but instead being more reusable. Look 
at the technical requirements defined in step 2 
and think about how your module might need 
to generalise in the future, or whether it can be 
designed in a way that can cover more than one 
requirement (e.g. a broader set of CQs and/or 
more of the user stories) at once. There is no right 
or wrong here, but this needs to be a decision 
made by the developers, in close collaboration 
with data stewards and end users, who may be 
the ones knowing what to expect in the future in 
terms of changes to the data or new uses planned.

Another design choice involves what level of 
axiomatisation to add to the ontology. We 
actually already saw an example of inferences on 
the previous page, where we used the semantics 
of the rdfs:subClassOf axioms to infer that the 
instance of a subclass is also an instance of the 
superclass, i.e. the tile is both a tile and an item 
in the case of the extended ontology. OWL also 
allows for much more complex axioms than this. 
What is important to remember is that reasoning 
is a powerful tool, and can be very valuable to 
both check the consistency of the domain model, 
as well as infer new information. However, these 

how to specialise it. Usually, some axioms are 
added to the ontology to prevent misuse of the 
relations, and to show the intended usage. This 
can be through domain and range restrictions 
on the relations themselves, or by setting a 
restriction on the class. Logically these have very 
different meanings (semantics), but unless you 
are going to use a reasoning engine (see more on 
this below) you can view this as cues about the 
intended use. 

Another issue that may arise is that you seemingly 
cannot find any direct relation between the 
concepts you are adding subconcepts to. In some 
cases, this may of course be because they are 
not actually connected in the model. But in many 
cases this may simply be because the connection 
is not direct. In OWL only binary relations exist, 
which creates a challenge when we need to 
connect multiple pieces of information that 
depend on each other. This could be for instance 
when we want to express material content of 
an item, and need to specify both the matter 
involved, the amount of it, and a unit of measure. 
For example, saying that “my tile contains 70% 
calcium sulfate” means connecting a specific tile 
(“my tile”), a material (calcium sulfate), a number 
(70), and a unit of measure (%). This cannot be 
expressed through a direct relation. Instead we 
have to use a technique known as reification, 
i.e. we treat the relation itself as a “thing”. This 
can be done by adding a class to the ontology 
representing the relation, e.g. in this case a 
MatterComposition class, that then relates to the 
item, the matter, the value and the unit. CEON is 
actually full of these reifications, in order to allow 
for very flexible modelling, and also to enable to 
track metadata on these kinds of statements.

Specialisation
In order to create appropriate specialisations, 
consider the ontological requirements (e.g. CQs) 
that were identified as not immediately covered 
by CEON or other existing ontologies. If the 
matching process in step 5a, understanding CEON, 
resulted in a number of identified connections to 
CEON, these can now be used to add subconcepts 
representing the missing specific concepts. 

Start by creating a new ontology file, i.e. do not 
modify the CEON files directly, but create your 
own ontology file with a new identifier and then 
import the CEON module you want to specialise. 
The new file should have its own identifier, using 
a URI that can be resolved (whether externally 
or on your intranet) when you publish the 
ontology. Then add the specialisations in this file. 
Commonly a modelling tool, such as Protégé, 
would be used to allow for graphical modelling. 
In Protégé, imports can be added using the user 
interface, and then subclasses, subproperties, 
and additional axioms can be added, before the 
file is saved and published. 

Where to actually “attach” your extension is not 
always straightforward. As mentioned above, 
you should have identified some connections 
between your requirements and CEON, or any 
other ontology you are extending. However, 
even if you have identified two concepts that you 
will specialise by creating subclasses of them, 
understanding how they are to be “connected” is 
not always obvious. In this context, it is important 
to remember the fact that OWL treats relations 
as first class citizens, i.e. properties exist in their 
own right, and not only as something “attached” 
to a concept. This is a great flexibility, but also a 
usability challenge as it may be hard to understand 
the intended usage of a relation, and thus also 
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Ontology Engineering Methodology
Several well established ontology engineering 
ethodologies exist, and a useful summary and 
overview of typical steps and activities can be 
found in the description of the Linked Open Terms 
approach12. However, other types of approaches 
and methodologies also exist, such as the eXtreme 
Design (XD)13, which is more suitable for modular 
ontology development and rapid prototyping of 
ontologies. More concrete, detailed advice on 
actual modelling can also be found in the tutorial 
from Stanford University14.

Testing
As hinted previously, sometimes the models 
become large and complex, even when split up 
into a set of modules. So another piece of advice 
is not to underestimate the need for testing 
of your ontology. Most ontology engineering 
methodologies include some evaluation or testing 
step, but they are sometimes not explained in 
detail. A minimal set of testing methods may 
include at least: 

	● Verifying the syntax by loading the ontology 
into a tool, and checking consistency of the 
model using an OWL reasoning engine.

	● Checking for structural errors using a validator 
tool, such as the OOPS! and FOOPS! services.

	● Testing your requirements fulfilment by 
expressing test data according to the ontology 
structure, and expressing some CQs (or 
existing queries) as queries over the test data, 
to verify that expected results are returned.

	● Verifying that expected inferences are made 
over the test data using a reasoning engine, 
and provoking errors by adding erroneous 
data that should not cause issues when 
encountered by the reasoning engine. 



50 51

Step 5c—Ontology alignment

can search for relevant ontologies. Examples 
include DBpedia Archivo16, BioPortal17, Linked 
Open Vocabularies18 (LOV), and the GitHub 
repository maintained by our project19. These 
repositories allow you to search for ontologies by 
concept or relationship names and to download 
them in various formats. Such repositories provide 
an important starting point for identifying ontologies 
that can be aligned with CEON, or any other ontology.

Ontology matching tools and what they do
A variety of ontology matching tools are available 
to generate candidate mappings. For example, 
LogMap20 is a well-known tool designed for 
scalability, i.e. working with large scale ontologies. 
It applies both lexical and structural matching 
strategies and includes unsatisfiability detection 
to ensure that the resulting ontology network 
(ontologies plus alignments) does not contain 
inconsistent concepts. This feature is crucial, as 
it helps to verify whether the integrated network 
is logically consistent. Another widely used tool is 
MATCHA21, which also employs matching strategies 
based on lexical and structural information 
contained in the ontologies. You can of course also 
select another matching tool of your choice, and 
apply it using the same principles. However, take 
care to ensure you can use the output of the tool 
for further validation, and be aware that different 
tools have different benefits and drawbacks and 
no tool is perfect—see them as an assistant, but 
not as providing the actual truth. 

matching tools to generate candidate mappings. 
These candidates then undergo an optional 
filtering step and a validation step to produce 
the final alignment. Filtering might mean that 
mappings generated by fewer than half tools are 
excluded to improve precision, if you use several 
ontology matching tools to produce candidate 
mappings. Then validation is a manual step, 
where a domain expert should check the output 
of the matching system, to make sure that no 
errors are introduced (since no such system is 
100% accurate). 

In our project, we have already provided sets of 
mappings between CEON and several relevant 
domain ontologies in the fields of materials, 
manufacturing, and products. If these ontologies are of 
interest, you can directly reuse the existing mappings.

Alternatively, if you are working with your own 
ontology or have identified another ontology that 
you wish to integrate with CEON, you can follow 
the alignment pipeline to generate new mappings. 
This process enables the creation of an ontology 
network that includes CEON, your ontology, and 
the “connections” (mappings) between them. 
In this case, the first step is to select a relevant 
ontology matching tool and use it to generate 
candidate mappings.

How to find other related ontologies?
There are several public repositories where you 

one concept being more specific, a subclass, of 
another), or even more complex relations than 
that. For instance, both CEON and the Digital 
Product Passport Ontology (DPPO) have Product 
concept definitions. If we establish an equivalence 
mapping or sub-relation mapping (CEON:Product is 
a DPPO:Product), we make it possible to utilize more 
semantics in DPPO, as graphically illustrated below.

What is ontology alignment?
Ontology alignment takes two ontologies as input 
and produces an alignment as output, that is, a 
set of mappings between entities from the input 
ontologies. These entities may include classes, 
object properties, data properties, or individuals.

In our project, we established a pipeline for 
generating alignments between CEON and other 
relevant ontologies. As illustrated in the figure 
to the right, once you have relevant ontologies, 
you can start with using one or more ontology 

In some cases, you may want to reuse concepts or 
relationships from other domain ontologies that 
are not yet represented in CEON or that are more 
detailed than CEON. Ontology alignment, also 
called ontology matching, is thus a key technique 
for enabling semantic interoperability15. 

Why ontology alignment?
In some cases, the ontologies you are working 
with does not cover all your needs. For example, 
you might need more detailed categories of 
engineering materials in your application, but 
CEON does not currently model them. If you 
identify another ontology that provides such 
detailed categories, you will need ontology 
alignment to integrate it with CEON. Ontology 
alignment establishes mappings between 
common concepts and relationships across 
different ontologies. These mappings can capture 
equivalence (e.g. two concepts representing the 
same meaning), hierarchical relationships (e.g. 
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Figure: A process overview for ontology alignment.
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Most ontology matching tools follow a common 
practice of representing mappings in the RDF 
format. A mapping is typically expressed as a 
four-element tuple consisting of two entities, the 
relationship between them, and a confidence 
score indicating the strength of that relationship. 
In our project, we further explored the use of 
the Simple Standard for Sharing Ontological 
Mappings (SSSOM)24, which extends this practice 
by supporting richer metadata for describing 
entity mappings. To facilitate this, we provide 
a program that converts mappings from RDF 
format into an SSSOM-compliant CSV format. The 
figure below shows how to represent a mapping 
with basic metadata supported in the RDF format 
and additional metadata supported by SSSOM. The 
following figure shows the previous mapping example 
in the tabular format, where the metadata contains 
basic RDF format-based metadata and additional 
metadata supported by SSSOM.

We suggest that you share your mappings 
together with any ontologies you have created, or 
want to make available, and publish them with a 
dereferenceable URI at your website.

A detailed tutorial on using an ontology matching 
tool (e.g., LogMap) to generate candidate 
mappings, with an optional step for converting 
them into the SSSOM format, is linked from our 
website.  

Validating and merging
Once you run an ontology matching tool, it 
is necessary to involve human validation to 
check the alignment output. Then, depending 
on the application, you may either require 
ontology alignments to demonstrate semantic 
interoperability between two ontologies, or 
you may need to integrate the alignments with 
the ontologies themselves—for example, when 
creating semantic mappings to transform data into 
RDF. In the latter case, a merging tool is required.

There are many ways of merging. Two common 
approaches to ontology merging (where an 
alignment can also be considered an ontology) are 
the following: (i) use Protégé22, which provides a 
merging function accessible directly through its 
user interface; (ii) use ROBOT23, a widely adopted 
tool in the Open Biomedical Ontologies (OBO) 
Foundry. ROBOT can be used as a command-line 
tool or as a library for any language running on the 
Java Virtual Machine. The result of this step (in case 
you decide to perform the merging) is an integrated 
ontology that includes the input ontologies, together 
with the alignment.

Sharing ontology alignments
Whether you decide to merge your ontologies or 
not, you may also want to publish the alignment you 
arrived at, for others to benefit from. For instance, 
this could be so that your business partners can also 
use the same alignments, and thus the same set of 
interconnected ontologies as you do. 

RDF format-based metadata Additional SSSOM format-based metadata

Figure: An example of an ontology alignment expressed in RDFs and SSSOM.



(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel 
waste into feedstock for floor tiles.

Step 5a—Ontology Requirements & Inventory: To 
improve the marketplace’s data infrastructure, the 
data steward and developer define Competency 
Questions (CQs): ‘What is the recycled content?’ 
and ‘Are toxic substances below legal limits?’ 
The CQs are mapped to Onto-DESIDE’s CEON 
ontology. CEON covers broad concepts (e.g., 
‘Material,’ ‘Composition’) but lacks terms for 
recycled footwear components and batch-level 
certification metadata. The developer records 
which CQs are supported and which require 
extensions, laying the groundwork to refine the 
ontology around real data needs.

Step 5b—Ontology Extension: To describe 
recycled shoe rubber accurately, the developer 
reused CEON and extends it by adding a subclass 
RecycledFootwearRubber under Material, and 
a property hasBatchCertificate to link materials 
to compliance data. The extension is then 
verified with the data stewards and end user 
representatives. This allows detailed descriptions 
of batches, such as “contains 22% recycled rubber, 
certified below legal thresholds for phthalates.” 
These extensions ensure semantic clarity and 
support traceability across systems, enabling 
consistent data interpretation and reuse.

(C) End-of-life: reuse
What: Reuse and resale of a door for use 
in other building projects.

Step 5a—Ontology Requirements & Inventory: 
Before putting such data online in the Solid pods 
it needs to be described by a shared model. Thus 
the actors jointly define CQs to represent common 
concepts in the data and data needs of the actors: 
“Does this door fit opening X within ±y mm?” “Is 
the fire rating valid for intended use?” “What is 
handedness and frame/hardware compatibility?” 
“What is the condition and provenance?” The 
intermediary's developer then maps CQs and 
current data to shared terms from the CEON 
ontologies and identifies gaps. While a Product 
concept is present in CEON, there is no notion of a 
building element, and locations within a building, 
such as floors and rooms etc.

Step 5b & C—Ontology Extension & Alignment (as 
needed): The developer extends CEON with door-
specific properties/classes (e.g., hasHandedness, 
hasTolerance, hasHingePattern, hasBackset, 
hasFrameType, hasRatingCredential, and 
hasCondition), some which can be reused from 
IFC, to describe item-level passports. Additionally, 
location parameters relevant to the door 
placement are reused from the Building Topology 
Ontology (BOT) ontology, a common ontology 
used in the smart buildings domain which is 
already used by several of the building owners.
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Step 5—Examples for different circular strategies

Continuing our circular strategy examples, we look at how Step 5 plays out. Step 5a identifies what 
concepts are needed to describe data, expressed as Competency Questions. Step 5b extends existing 
ontologies like CEON if gaps are found, adding specific classes or properties. Step 5c aligns multiple 
ontologies to ensure semantic consistency across systems, enabling interoperable data sharing and 
federated querying in circular value chains. They feature as needed for each example.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.

Step 5a—Ontology Requirements & Inventory: 
The developer first defines CQs to represent data 
needs: “Which tiles in Building X are eligible for 
take-back (lot, binder, wear ≤Y, contamination 
≤Z) by what OEM?”, “What m² per eligible lot 
can be collected within time window W?”, “What 
packaging/handling is required per batch?”, 
“What is the verified chain-of-custody from 
removal to OEM dock?”. They then map current 
terms and data to CEON concepts and properties 
and list gaps.

Step 5b—Ontology Extension (as needed): While 
most concepts and properties needed are already 
available in CEON, for the sake of understandability 
the developer decides to add tile-specific concepts 
and properties, e.g., RemanufacturableTile 
(subclass of Item), hasLotID, hasBinderType, 
hasWearGrade, hasContaminationScore, etc.

(B) Middle-of-life: repair
What: Repair of audio system through 
access to reliable spare parts & instructions.

Step 5a—Ontology Requirements & Inventory: 
The building owner must verify the repaired 
speaker’s compliance and recycled content. 
The OEM’s data steward frames competency 
questions (CQs)—e.g., “What are this device’s 
components?”, “How much recycled content 
does it contain?”, “Does it meet toxic-substance 
thresholds?”—and maps them to CEON. CEON 
covers general notions (Product, Product 
Component, Material Composition) but lacks 
electronics-specific and repair-history concepts. 
The steward records which CQs are supported 
and which require extensions.

Step 5b—Ontology Alignment: To cover smart 
electronics devices, the developer decides to reuse 
the SAREF ontologies (The Smart Applications 
REFerence Ontology) and additionally some 
compliance data that uses external certification 
vocabularies (ontologies). The developer creates 
mappings between CEON and these ontologies 
to ensure semantic interoperability. For example, 
saref:Device can be aligned with CEON’s Product 
concept, and hasMatter is aligned with equivalent 
relations in certification schemas. This allows 
data from different systems to be interpreted 
consistently, enabling secure and verifiable sharing 
of repair-related environmental data across actors 
without requiring changes to internal systems.
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Step 6—Ensure technical interoperability: data formats

RDF data can be represented in many different 
(syntactic) formats: you can represent an RDF 
graph in JSON using the JSON-LD specification, in 
XML using the RDF/XML specification, and others, 
such as Turtle: a dedicated format to represent RDF 
data. Turtle is specifically designed to be human 
readable and compact, so that it is relatively easy 
to understand an RDF file in this syntax, even when 
inspecting it using a text editor.

Below, we see a piece of RDF data that represents 
a specific type of product: a subject (URI, noted 
with angle brackets <URI>) links via a predicate 
(URI) to an object (URI).

just adding a new edge and node to the existing 
graph”) and introducing new links (“it’s just adding a 
new edge between two existing nodes in a graph”).

Labeled property graphs and companies such 
as Neo4J use a similar graph-based datamodel. 
However, labeled property graphs are stored in a 
centralized database. The graph-based datamodel 
makes it easier to introduce new data and new data 
links in the existing (centralized) graph, however, 
the problem of introducing new data stores and 
new cross-party data links is NOT solved.

The Resource Description Framework (RDF)
We apply a different graph-based datamodel, 
called the Resource Description Framework (RDF). 
This framework allows structuring data in a graph, 
but further introduces global identifiers, i.e. web 
identifiers, URIs. In RDF, data is structured as 
triples: a subject (node), a predicate (edge), and 
an object (node), where subjects and predicates 
are URIs (thus, becoming globally identifiable), and 
each object can be either a literal (value) or a URI. 
Since OWL is based on RDF, the ontology described 
in Step 5 can also be encoded as an RDF graph, 
and thus allow instance data to be linked to other 
instance data or to ontologies. 

In the previous step, we introduced semantic 
interoperability and an ontology network to 
describe a data model to create a common 
understanding of what kinds of data we want 
to exchange across parties (Step 5). However, to 
achieve true data interoperability, we need to 
map existing datasets onto that ontology. The 
next step introduces some technical best practices 
of how to achieve that, but in this step, Step 6, 
we first introduce some background technical 
information: interoperable data formats.

Graph data
Existing tabular or tree-based data structures 
inherently have limited flexibility: changing a 
database schema typically requires a database 
migration, and creating new combinations of data 
within a database introduces the need for joins 
and join tables. To make sure we can map our 
data in such a way that it becomes interoperable 
for many different parties and their use cases, we 
would benefit from a more flexible data model.

We therefore recommend a graph-based datamodel, 
with its primitives only consisting of nodes and edges. 
By only using nodes and edges, we have a very 
flexible means of introducing new structures (“it’s 

<http://example.com/FloorTile_type_y> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://w3id.org/CEON/ontology/product/Product> .

Turtle provides a couple of shortcut mechanisms 
to make the data more easy to read, as seen 
in the next example. First, we see some prefix 
declarations, to make URIs shorter to write. 
The next triple links a tile’s identifier to its type 
(Item) via the rdf:type ontology term), and via 
the rdfs:label predicate to its name (literal, noted 
with double quotes ""). The final triple specifies 
after which Product is modelled by. As all triples 
describe the same subject, we can use a shortcut 
via the semi-colon.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ceon-product: <http://w3id.org/CEON/ontology/product/>
PREFIX ex: <http://example.com/>
ex:Tile_id1234 rdf:type	 ceon-product:Item;
    rdfs:label "Tile id1234 of product type Y" ;
    ceon-product:modelledBy ex:FloorTile_type_y.

More about RDF and 
knowledge graphs
RDF was developed by 
the World Wide Web 
Consortium (W3C) 
in the late 1990s as 
part of the effort to 
create a “semantic 
web” where web data can be understood 
and processed by machines. RDF became a 
W3C Recommendation in 1999, marking its 
official adoption as a standard for describing 
web resources. RDF is the backbone of linked 
data on the web, which encourages the 
interlinking of web resources to create a web 
of data, rather than isolated documents. 
What is nowadays called knowledge graphs 
is commonly seen as an extension of the 
linked data concept. RDF is one of the most 
common formats for knowledge graphs. 

Prefixes

ex:FloorTile_type_y ceon-product:Product

ex:Tile_id1234 ceon-product:Item

"Tile id1234 of
product type Y" These triples could be illustrated in the graphical 

notation (Grafoo) that you have seen earlier in 
this guide: see figure to the left. [image]

Responsible role:      Developer.  

Figure: Graph data described using RDF.

Data 
Steward:
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Step 7—Define data transformation: connecting data and ontologies

 Mapping pipeline
In Onto-DESIDE, we have built a Docker image, 
available as rmlio/solid-ocp-transformer on 
Docker Hub, that encapsulates a complete 
pipeline—from source data to CEON-aligned 
RDF with access control and verifiable claims. 
This simplifies deployment and guarantees 
reproducibility. With one command, a system 
administrator can run the full process:

1.	Transform heterogeneous data into RDF,
2.	Split it into subsets,
3.	Add Verifiable Credentials,
4.	Upload resources to the Solid Pod,
5.	Configure access control rules, and:
6.	Delete obsolete data.

By following this transformation step, all actors 
in the OCP can share interoperable, trustworthy, 
and access-controlled data, while still maintaining 
full control over their own systems and sources. 
This approach ensures that the platform not 
only integrates heterogeneous datasets but also 
establishes a secure and verifiable foundation 
for data exchange within the circular economy. 
IMAGE:  

Third, for each iteration, the mapping from the 
relevant data fields to an RDF representation 
is described, e.g. the internal column ‘name’ is 
mapped to ontology term dcterms:title, etc.

Generating RDF data
Once a mapping file is done, this can be used to 
instruct a mapping engine to perform the actual 
data transformations. The RMLMapper is a 
mature mapping engine.
 
During execution, the RMLMapper processes the 
mapping rules, generates RDF data, and stores 
this data on the Solid Pod. 

Optionally, the data can be wrapped in a Verifiable 
Credential28 (VC) envelope. This additional step 
ensures that data consumers can verify the 
authenticity and integrity of shared resources 
using standard VC mechanisms. 

Finally, also data lifecycle events must be handled. 
Updates to the source must trigger a re-execution 
of the mapping, automatically replacing outdated 
RDF resources. When source data is deleted, 
obsolete RDF resources must be removed from 
the Solid Pod, maintaining consistency between 
the source and the published data. 

A detailed tutorial explaining how to write these 
mapping files in YARRRML is linked from our website.  

In its essence, creating and managing mapping 
files goes as follows. First, specify the globally 
unique and permanent identification schema you 
will apply, i.e. specify how to go from your local 
identifiers to URIs. A simple URI scheme could 
be https://[organization domain]/data/[element 
concept type]/[element local id]. This URI scheme 
includes semantics in the identifier. Such a human-
readable URI makes debugging your setup-up 
much easier. However, this is not deemed a best 
practice: in this case, encoding the type of the 
element within your URI makes it confusing later 
if the type of the element changes (and global 
identifiers should not change). Just using generic 
identifiers such as UUIDs is preferred.

Second, the internal data is iterated upon. In a 
CSV file, this means going over every row of the 
file. In a relational database, this means executing 
a query and going over every query result. For a 
JSON file a JSONPath expression, e.g. $.items[*], 
can be defined to iterate over each item entry 
individually. Depending on which data source 
you are accessing, different query languages are 
applicable (e.g., SQL for a relational database, 
JSONPath for JSON files, XPath for XML files).

Once relevant data, required to solve the user 
stories (Step 2), has been identified in the data 
inventory (Step 3) and the infrastructure to 
share the data has been set up (Step 4), the next 
step is to ensure that heterogeneous datasets, 
each with their own formats (e.g. databases, 
CSV, JSON, XML) and model (e.g. product, item, 
resource or material as term to express the same 
thing), can be represented in a uniform way that 
is semantically meaningful across all actors. 
Within the Open Circularity Platform (OCP), 
this is achieved by mapping company-specific 
data sources into RDF according to the Circular 
Economy Ontology Network (CEON) (Step 5), 
which serves as the global schema.

Data mappings
At the core of this process is the mapping 
component, which defines how data from a 
source schema is translated into RDF resources 
that follow the ontology. To describe these 
mappings, we use the RDF Mapping Language25 
(RML), an extension of the W3C standard 
R2RML26. Unlike R2RML, which is restricted to 
relational databases, RML supports a variety of 
data sources, making it well-suited for real-world 
scenarios where companies rely on diverse legacy 
systems. To make RML easier to configure, we 
use YARRRML27, a human-friendly syntax that is 
converted into machine-readable RML rules by 
the YARRRML Parser.

The mapping files created by each actor specify:

	● Which data is shared,
	● How it is translated to RDF aligned with CEON,
	● How the data is split across resources,
	● How it is stored on a Solid Pod, and:
	● Which access control rules apply.

 

Data 
Steward:

Responsible role:      Developer.  Participants:     Data Stewards, to verify the correct mapping of the data. 
Data 

Steward:

Figure: Combining the different 
parts into a whole.

https://docs.google.com/presentation/d/1gGN4UQlu8VhZd7oQOu81zqwz1BYzDlvaIPRYWttnvIU/edit?usp=sharing
https://github.com/KNowledgeOnWebScale/OntoDESIDE-Tutorials/tree/v1.0.0
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Step 8—Set up querying: federated querying with SPARQL

Comunica is a special kind of SPARQL engine, 
capable of processing such SPARQL queries over a 
(dynamic) set of data sources (so-called federated 
querying): the SPARQL query above could be 
asked to multiple resources, over multiple pods, 
and Comunica will be able to correctly combine 
the information coming for all different resources 
and integrate them on the fly. 

Federated querying
A SPARQL engine executes the query, running 
it against RDF data. Many established SPARQL 
engines–such as those built in triple stores such 
as Virtuoso, GraphDB, or QLever–are optimized 
for querying their own triple store, but cannot 
easily perform federated queries, especially in 
cases where the data sources are dynamic.

an expression), and ORDER BY (sorts results based 
on an expression). 

Consider again the example of a specific floor 
tile, linked to its type, that was illustrated in Step 
5b. The query at the bottom of this page is an 
example to find all items modelled by a certain 
type of product, in this case "floor tile type y", and 
to return both the item itself and its label. 

The first three lines declare prefixes, which are 
shortcuts so we don't have to repeat long URIs. 
The next line selects what information the query 
should return, using variables which start with 
a question mark. In this case, we want two data 
elements: ?item, i.e. the item itself, and ?label, 
i.e. the human-readable name of that item.

The last five lines, the where block, describes 
the pattern the query looks for in the RDF data. 
In this case, each query result must satisfy the 
following three conditions: anything bound to 
the variable ?item must (i) be of the type <http://
w3id.org/CEON/ontology/product/Item>, (ii) 
must have a label, where this label will be bound 
to the variable ?label, and (iii) must be modelled 
by the product with URI <http://example.com/
FloorTile_type>.

Once data has been described by ontologies and 
expressed in a standard format, Steps 8 and 9 
are about putting the data into use. First, given 
that your data is now in RDF form, it is time to 
create the SPARQL queries that are to be used for 
accessing the data from an application point of view. 

The SPARQL query language
Now that we have all data in the standardised 
RDF format, integrating data becomes a matter of 
sending queries to all relevant data sources. SPARQL 
is a query language to select specific data from 
RDF datasets. By querying the relevant datasets via 
SPARQL, data can be integrated on the fly, and the 
right answers are generated dynamically.

A SELECT query is a typical SPARQL query to find 
values that satisfy conditions. The syntax can be 
seen as a combination of Turtle and SQL. RDF data 
is selected using triple patterns: a triple pattern 
is a triple in which each of the components can 
be a variable. Further processing or filtering of 
the selected RDF data is done using additional 
SPARQL modifiers, e.g. LIMIT (returns only the 
first n results), OPTIONAL (specifies a left join, 
i.e. includes extra information in your results 
if it exists, but it won’t remove a result if that 
information is missing), FILTER (selects based on 

PREFIX  ceon-product: <http://w3id.org/CEON/ontology/product/>
PREFIX  rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX  ex:   <http://example.com/>
SELECT  ?item ?label 
WHERE 
	 { ?item  a ceon-product:Item;
           rdfs:label ?label;
           ceon-product:modelledBy ex:FloorTile_type_y.
	 }

Data 
Steward:

Responsible role:      Developer.  Participants:      End users to verify that queries meet information needs.
End-
User:

Figure: An example of setting up queries in Comunica.



(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel 
waste into feedstock for floor tiles.

Step 6—Ensure Technical Interoperability: The 
suppliers store their data in formats like CSV and 
JSON, which vary in structure. To standardize this, 
the developer proposes to convert this data into 
RDF, linking each field—such as rubber content 
or batch ID—to the extended CEON concepts. 
This ensures that all actors interpret the data 
consistently, enabling smooth exchange and 
integration across the digital marketplace.

Step 7—Define Data Transformation: Using 
YARRRML mapping files, the developer describes 
how CSV headers and JSON keys from the 
suppliers' source data—such as “rubber_content” 
and“certificate_id”—map to CEON properties 
like MatterComposition and hasBatchCertificate. 
Sensitive fields, such as toxic substance levels, get 
restricted access. Lastly, all the data is uploaded 
to the Solid pods of the suppliers.

Step 8—Set Up Querying: To retrieve relevant 
information, the developer creates SPARQL 
queries, to be executed over the OCP. One query 
asks: “Which batches contain recycled rubber 
certified below legal thresholds for phthalates?” 
These queries run across all decentralized Solid 
pods, allowing processors and buyers to verify 
compliance and material suitability.

(C) End-of-life: reuse
What: Reuse and resale of a door for use 
in other building projects.

Step 6—Ensure Technical Interoperability: To 
secure technical interoperability, RDF has been 
selected as the common data format, and several 
of the building owners can already exchange RDF 
data directly to/from their facility management 
systems. The graph-based structure of RDF, and 
use of globally unique identifiers, allows for 
seamless integration of new information types, 
supporting diverse building owner use cases.

Step 7—Define Data Transformation: The 
developer creates YARRRML mappings describing 
how building-owner data that isn’t natively in 
RDF is transformed to RDF using CEON terms, 
with door-specific ontology extensions and 
alignments. For example, door IDs are mapped 
to URIs and image URLs linked via the property 
hasImage, defined in a CEON extension. The 
mapping also creates access-control rules for 
sensitive data (pricing, precise location), and the 
data is then published on Solid pods.

Step 8—Set Up Querying: The developer also 
supplies reusable SPARQL queries for buyers 
and planners to run over the OCP—for example, 
“select doors within ±10 mm of WxH for Opening 
#ID.” An intermediary executes these queries 
across building owners’ Solid pods on the OCP, 
returning a shortlist of units suitable for reuse.
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Step 6, 7 and 8—Examples for different circular strategies

Steps 6–8 turn aligned data into information that can flow across systems. Step 6 ensures technical 
interoperability by expressing data from different organisations in a common graph model (RDF) using 
serialisations like JSON-LD, so heterogeneous sources can be combined without redesigning databases. 
Step 7 defines mappings from internal formats (CSV, JSON, XML, databases) into this shared model, 
specifying what is shared, how it is represented in the ontology, and how it is stored and governed on 
decentralised infrastructure such as Solid pods. Step 8 implements information needs as SPARQL queries 
executed across multiple decentralised sources, enabling on-the-fly integration for circular decision-
making. Below, we continue the circular strategy examples to show how these steps work in practice.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.

Step 6—Ensure Technical Interoperability: All 
actors of the decentralized network—building 
owners, contractors, intermediaries and OEMs—
decide to keep their data in their original databases 
but to convert this to RDF for exchange through 
the OCP, to secure technical interoperability. As 
they reuse persistent globally unique URIs to 
identify batches and product models, or even 
individual tiles, the data of the various actors can 
be automatically combined to optimize the take-
back process and create traceability.

Step 7—Define Data Transformation: The 
developer creates YARRRML mappings describing 
how building-owner data that isn’t natively in 
RDF is transformed to RDF using CEON terms, 
with door-specific ontology extensions and 
alignments. The mapping links door ids to URIs 
and image URLs are linked with the property 
hasImage, defined as a CEON extension. The 
mapping also creates access-control rules for 
sensitive data (pricing, precise location), and the 
data is then published on Solid pods.

Step 8—Set Up Querying: The developer also 
writes SPARQL queries which run over all data 
exposed by the set of Solid pods in the OCP, to 
answer questions such as “Find eligible tiles by 
lot, with area ≥ A and pickup window next 14 days”.

(B) Middle-of-life: repair
What: Repair of audio system through 
access to reliable spare parts & instructions.

Step 6—Ensure Technical Interoperability: 
The OEM stores product data in a relational 
database, incl. component IDs, repair history, and 
certificates. To ensure technical interoperability, 
the OEM enables the representation of this data 
in RDF, a flexible graph-based data format that can 
easily be shared through the OCP. However, the 
original database stays as it is, and the data needed 
to respond to the needs of the other actors is only 
transformed to RDF on a per-need basis.

Step 7—Define Data Transformation: Using 
YARRRML mappings, the OEM maps database 
attributes (e.g., “component_id”, “certificate_
reference”) to CEON properties (e.g., 
hasProductComponent, hasCertificate). The 
resulting RDF is published to the OEM’s Solid pod. 
Access control is applied to sensitive data entities, 
such as proprietary data, to support secure, 
standardised sharing of product and repair data.

Step 8—Set Up Querying: SPARQL queries 
retrieve key information—such as, which speaker 
units were repaired, level of recycled material, 
and certificate validity. These run across the OCP’s 
decentralised Solid pods, including the OEM’s, 
enabling building owners and external repair 
partners to verify compliance and repair status.
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Responsible role:      Developer.  Participants:         Decision makers to make decisions on investing in applications    +      End users to evaluate and guide development of user interfaces.

Step 9—Develop data access applications

set up, independent of the networks the Solid 
pods reside in, following the instructions of the 
extensive readme of Miravi’s GitHub repository.

As a demonstrator for the Onto-DESIDE project 
an Open Circularity Platform Viewer was 
configured using Miravi. The Viewer provides a 
set of predefined queries the user can execute 
over the Solid pods with example data from the 
three domains under focus in the project, i.e. the 
textile, electronics, and construction domain. The 
predefined queries provide the needed data to 
resolve the domain specific and cross-domain use 
cases defined to evaluate the project, e.g., for the 
repair of an audio system, a building owner can 
discover repair instructions and track the digital 
product passport information of the original and 
repaired product in OCP Viewer. image

Miravi showcase the potential of combined data 
to enable resource flows and accelerate circular 
economy.   

Miravi allows you to configure a data dashboard 
customized to a specific use case, integrating data 
from decentralized open and access controlled 
data sources, including but not limited to Solid 
pods. During usage, an end user browses the 
user-friendly web UI which provides access to the 
Solid-based decentralized data-sharing platform 
via predefined SPARQL queries. The predefined 
queries can start from an index to traverse an 
evolving set of query sources and can make use of 
variables to be filled in by the end user for more 
flexible querying. Miravi also allows the end user 
to export the query results, and to create, save, 
and load custom queries. Miravi can be easily 

the data of all included actors within the network, 
as a starting point for queries. Every change, 
e.g. every time a resource is added or removed, 
should be reflected in the source index. For the 
Onto-DESIDE demonstrators, we have maintained 
domain-specific source indexes, i.e. containing the 
URIs of data sources from resp. for the construction, 
electronics and textile domain, and a cross-domain 
index, covering these three domains. 

Access control
Second, concerning access control, the Solid 
specifications provide a way to set access control 
rules on specific user accounts, or user account 
groups, thus providing role-based access control 
(RBAC). Granting or denying read or write 
access can be made simple via dedicated user-
facing applications. We provided LOAMA as a 
demonstrator of how such an access management 
application could look like. A link to this application 
is available on the project website. Considering 
the resale of doors, a building owner can use 
LOAMA to grant read access to the resources with 
commercially sensitive data such as pricing with a 
specific buyer, without disclosing this information 
to other interested parties.  

Frontend applications
Third, end users experience the benefits of these 
backend solutions through frontend applications, 
which can present the integrated data (i.e. the 
query results) to the end user in an intuïtively 
understandable way. Within the next section, 
we introduce such a demonstrator frontend 
application. IMAGE

Using Miravi
Miravi is an exemplary application on top of the 
technically and semanticly interoperable open 
and access controlled data. Applications like 

Although SPARQL (as presented in the previous 
step) is a mature standard to query data from 
RDF-based data storage, it is for technical 
purposes and application access to data. End-
users of the data need to access data in a different 
way. In this step, we describe how applications 
can access the data, and exemplify this through 
a data viewer built in the project. This could 
be seen as the starting point for building your 
own applications on top of the data sharing 
infrastructure, or for connecting your existing 
applications to the OCP platform.

From backend to user-facing solutions
Up till now, we mostly introduced the backend 
solutions needed to easily share and integrate data 
for and from multiple stakeholders in a network. 
However, there are some additional steps to be 
taken. First, some governance framework needs 
to be set up, to make sure that the shared data 
is discoverable by the relevant partners in the 
network, e.g. managing the configuration of the 
value network, and its data sources. Second, data 
sharing contracts should be set so that access to 
the right data is agreed upon. Third, user-facing 
applications are needed to make sure that end 
users experience the benefits of easily integrated 
data from these backend solutions in an intuïtively 
understandable way.

Governance
First, concerning governance, existing initiatives 
such as dataspaces can be applied. These initiatives 
introduce the concept of a data catalogue: a 
registry where all data that may be discovered by 
the network is described. Note that this catalogue 
does not contain the actual data, but only the 
metadata. Within this step, we propose a source 
index, managed by a network administrator. Such 
a source index contains pointers to the location of 

OCP-  Viewer
- integrate data -

LOAMA
- request and grant access -

index storage

Data 
Steward:

End-
User:
Data 

Steward:

Figure: Using the Open Circularity Platform with LOAMA to manage access control.
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Step 10—Plan for maintenance and evolution

Changes in data transformation—Step 7
Changes in the mappings of data to the ontologies 
will not appear by themselves, but are always 
consequences of other changes. For instance, 
when the data inventory is updated or ontologies 
change, the data transformations must be 
reviewed to identify if there are user needs that 
are no longer met, if new user needs can be met, 
and assess the need of changes in the mappings 
or whether it is merely enough to update the 
mappings to a new ontology vocabulary. 

Changes in queries—Step 8
Similarly to step 6 the standards we work with 
are mature and stable, and no direct impact 
onto or from this step are expected. While still 
consequences of other changes may have to be 
reflected in the queries, e.g. using new vocabulary in 
the queries if the ontologies are changed, or querying 
over new data sources if such become available.

Changes in applications—Step 9
The use of standard languages, and by separating 
the models and queries from the applications, 
make applications built on top of this kind of 

Changes in ontologies—Step 5
As mentioned previously, ontologies may need 
to be updated, based on new information 
needs, technical requirements, new or changing 
data sources. However, changes could also be 
initiated by an update to an ontology the network 
relies on, potentially beyond the control of the 
value chanin actors. Relying on standards and 
frequently used ontologies is a good practice, 
since this increases interoperability also across 
value chain collaborations, but it also means that 
some ontologies may be outside the control of 
the involved actors. Updates to such ontologies 
may then result in the need for updating the data 
transformations, queries and potentially slightly 
modify applications using the ontologies and data.

Changes in data formats—Step 6
The standards we recommend are mature and 
stable, and no direct impact onto or from this 
step is expected. In fact, one of the benefits of 
applying our approach is that the data formats 
are generic, and not specifically tailored to any 
industry domain or use case, which makes them 
particularly robust and unlikely to change.

Updating the data inventory—Step 3
When the requirements are updated, the data 
inventory needs to be reviewed to identify 
whether you can cover this requirement with 
your existing data inventory or you need to look 
for additional data sources (or data collection 
opportunities). On the other hand, when the set 
of data sources changes (e.g. a new data source is 
identified, or an existing data source is updated), 
the data inventory must be reviewed and updated 
to reflect that. Such a change may in some cases 
be an opportunity, but may in some cases instead 
lead to that a data source no longer matches the 
information need it was previously used to fulfill. 

New previously unseen data may result in needs 
to update ontologies and queries, as well as 
applications, while removal of data element 
usually does not affect the models in the same 
way. However, queries can of course no longer ask 
for data that is not available.

Changes in data sharing setup—Step 4
When a new actor enters the network, a new data 
sharing web service must be set up. However, this 
should not affect the other actors in the network, 
regarding their data sharing setup.

Finally, this step describes various scenarios for 
maintenance and evolution of the data sharing 
infrastructure, such as extending the value chain 
configuration with new actors, including new 
data sources, adapting to changes in models, 
data and formats, as well as transforming data 
into new structural patterns, to adopt new or 
alternative ontologies. This step does not cover all 
possible scenarios, but gives a hint as to what will 
be necessary to keep the infrastructure up to date.

After concluding the previous steps, you have 
a robust set of technologies to create more 
interoperable data exchange in the Circular 
Economy domain. Every subsequent change is 
incremental. Depending on where the change 
happens, subsequent steps in this guide also 
must be reviewed. In the following paragraphs we 
discuss how changes to the context, requirements 
or certain artefacts will affect what was done in 
other steps.  

Changes in the Circular Value Chain—Step 1
If changes appear in the context where the data 
sharing infrastructure is used, i.e. the value chain 
collaboration, then the mapping of flows may 
need to be updated and the subsequent steps 
may have to be revisited. For instance, it could 
involve adding new possible resource paths, 
involve new types of actors in the collaboration, 
or update the information needs and barriers.

Changes in requirements—Step 2
When a new user need is identified, this must be 
added to the list of requirements. Or if a change of 
requirements is identified based on, for instance, 
a change in the value chain context then the 
solutions and decisions made in subsequent steps 
will have to be revisited. Perhaps some solutions 
are no longer relevant.

Data 
Steward:

Responsible role:       Developer/ End user. Participants: Any other role that may detect changes/ changing needs. 
End-
User:
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NEW:

New or changing data sourceNew or changed value chain con�gurations

New or changed requirements New ontologies or standards New or changed apps

Figure: Maintenance and evolution means to go back to previous steps in the process.



68 69

Subsequently, a mapping of the data source (step 
7) is needed, to these new ontology extensions, 
and formulation of new queries (step 8) that 
include these data, to complement previous reuse 
queries. If the applications (step 9) for mediating 
and marketing reused building elements are not 
able to take into account usage data aspects in 
their presentation of the available elements, they 
may need to be updated. For instance, consider 
the case of adding a way to search and filter used 
doors based on the type of usage of the rooms 
they have been mounted in, or based on the 
usage frequency.   

Changes across scenarios—Modifying an 
ontology
We have previously described the flexibility of 
the graph data model in adapting to different 
situations that may occur in the real world 
(especially, in a complex domain such as that of 
CE value chains) that is to be modelled. Yet, even 
if ontological data schemas are less rigorous than 
most other schema types, sometimes we need 
to reshape the data in such a way that even the 
ontology itself needs to be modified. This may 
hold even though the world itself has not changed. 
The motivation for such a change would typically 
be the need for greater conciseness of the data 
graph, but sometimes also, a bit opposite, putting 
some (previously tiny or implicit) parts of the 
graph into the spotlight. The ontology should 
then undergo what we label as transformation.

A simple example of ontology transformation is 
de-reification. Remember the material content 
modeling problem: in the reification style of 
modeling, CEON contains a MatterComposition 
class, connected with relations possibly called 
“item”, “matter”, “value” and “unit” . Then we 
find out that reaching from the item (such as 

need to be specialised (step 5), however, given 
that the requirements remain more or less the 
same no extensions to the core ontologies would 
be needed. Next, the data source of the new 
actors need to be mapped to these ontologies 
(step 7), but if the new data is described by a 
specialisation of the previous ontologies, then it 
may even be possible to use the previous queries 
unchanged, simply adding new sources to the 
source index used as starting point for the query. 
And thus the marketplace application, if built 
based on the core ontologies, should remain 
more or less unchanged.

Change in scenario B—Adding a new data source 
to the infrastructure
In the context of our scenario 2, reuse of building 
elements, we may consider the addition of a 
BIM system, providing a digital twin view of the 
building, by the building owner. Such a system 
provides a new source of information about the 
used building elements, i.e. also including usage 
and repair data about the elements, in addition to 
the manufacturing data, product retail data etc. 

Adding such a new data source does not change the 
flows, or requirements, nor the way the building 
owner will share data with others. However, the 
data inventory (step 3) is updated, by adding the 
new data source. Then this new data source is 
compared with the current ontologies, to see if 
they already cover all the needed data points. 
In this case, it may be the case that extensions 
are needed, if usage data for instance was not 
previously covered by the ontologies. Thus, an 
ontology extension is needed, where external 
ontology models for BIM can be reused, through 
adding an alignment (step 5c) to the CEON core 
modules. 

infrastructure surprisingly robust. While changes 
in data availability and requirements may certainly 
result in new or modified data visualisations, 
all the formats and data access components 
remain the same. Hence, no major changes in 
applications will most likely be required based on 
changes in any of the previous steps.

Below, we give an overview of how the steps are 
dependent on each other. Note how Steps 4, 6, 
and 9 are deemed to be independent of changes 
happening in the other steps.

Change in scenario A—Adding a new actor to the 
value network
In the context of our scenario 1, using recycling 
material, as time passes new recycling methods 
will appear, and new actors become interested 
in the recycled feedstock. In such a marketplace 
scenario, there will constantly be new suppliers 
of recycled material, and new actors interested 
in purchasing batches of materials, hence the 
concrete set of actors will change, and new 
material flows (step 1) will be added (and others 
removed). 

In this case, the business case is still selling and 
buying recycled materials as feedstock for new 
products, hence, requirements (step 2) of the 
value network remain more or less the same. 
While the data inventory (step 3) is constantly 
changing, including data of new suppliers, and 
removing actors that no longer provide any 
materials for the marketplace. Each new actor 
that desires to participate in the material, and 
data, exchange needs to set up their data sharing 
service (step 4), e.g. contract a Solid pod service.

In case the new flows require new data points 
about the recycled materials, the ontologies may 

“tile”) to the matter (such as “calcium sulfate”) is 
cumbersome for some applications, because of 
the intermediate hops in the graph. For example: 
a data diagram in a visualization tool would be too 
cluttered, or some large-scale data analytics tasks 
would have to search in an unnecessarily large space.

An ontology transformation tool, such as 
PatOMat2 developed in the Onto-DESIDE project 
(see further information on our website), can 
then help us identify the possible “shortcut” 
(leading directly from the item to the matter), and 
introduce it into the ontology. Moreover, it can 
suggest, through a call to a pre-trained language 
model, a possible label for the new “shortcut” 
relation, for example, “contains matter”. 



(B) Middle-of-life: repair
What: Repair of audio system through 
access to reliable spare parts & instructions.

Step 9–Develop Data Access Applications: A 
building owner can now use a repair portal to 
check the options for repair or replacement of the 
speaker unit. The app connects to the Solid pods 
of the OCP and runs SPARQL queries to display 
repair and replacement options, including details 
on recycled content, and compliance certificates. 
Sensitive data is restricted to authorized users. 
The interface allows verification of environmental 
compliance, supports informed decision-making, 
and ensures traceability of repaired components.

Step 10–Plan Maintenance and Evolution: If the 
OEM updates its repair process or introduces new 
materials into their spare parts, the ontology can 
be extended to reflect these changes. New data 
mappings are then created, and SPARQL queries 
are adjusted to include updated terms. Thus, such 
new data can then be displayed by apps built on 
top of the infrastructure, without substantial 
changes to their implementation. The system 
supports ongoing evolution, allowing new actors, 
data sources, and regulatory requirements to be 
integrated without disrupting existing workflows.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel 
waste into feedstock for floor tiles.

Step 9–Develop Data Access Applications: The 
developers of the materials marketplace edit 
their dashboard to browse available batches of 
recycled rubber based on the new terms of the 
extended CEON vocabulary. This app connects 
to the OCP, consisting of the published Solid 
pods, and runs the predefined SPARQL queries to 
retrieve batch composition, recycled content, and 
certification status. Sensitive data, such as exact 
toxic substance levels, is only shown to specific 
authorized users. The interface allows filtering by 
material type and compliance status, supporting 
informed procurement decisions and enabling 
traceable, circular sourcing.

Step 10–Plan Maintenance and Evolution: As 
new suppliers join the marketplace or regulations 
change, the data steward and the developers 
update the data inventory, ontology, YARRRML 
mapping files and SPARQL queries. As the system 
was designed to accommodate new actors 
and data sources this does not disrupt existing 
workflows, and long-term adaptability and 
compliance in the circular value chain is ensured.

(C) End-of-life: reuse
What: Reuse and resale of a door for use 
in other building projects.

Step 9–Develop Data Access Applications: The 
intermediary hosting a marketplace application, 
for sale of reused construction elements, extends 
their application from manual data input to using 
SPARQL queries over the OCP to retrieve data 
from door passports shared via decentralised 
Solid pods. This data is processed to present 
items that match the needs of the logged in 
users. Interested buyers can request read access 
to sensitive data such as price or exact location. 
This information is rendered only after this access 
is granted to the logged in user.

Step 10–Plan Maintenance and Evolution: When 
new fire ratings, new component attributes or 
new certification types appear, data inventories, 
ontologies, mappings and queries are updated. 
As the graph-based structure of RDF allows for 
seamless integration of new properties into the 
datasets, without the need to adapt all other 
datasets, the data on the decentralized Solid 
pods remains backwards compatible and reuse 
transactions and queries continue reliably. 
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Step 9 and 10—Examples for different circular strategies

Steps 9 and 10 bring the infrastructure to end users and keep it adaptable. Step 9 develops data access 
applications—dashboards, portals or extensions to existing tools—that run SPARQL queries over 
decentralised sources, presenting integrated, access-controlled data in task-oriented views without 
exposing technical complexity. Step 10 plans maintenance and evolution: governance for catalogues and 
roles, management of data-sharing agreements, and monitoring of changing needs, sources, standards 
or ontologies. Because data formats, ontologies, mappings and queries are separated from applications, 
most updates can be made by adjusting these layers rather than rebuilding systems, keeping the setup 
robust over time.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the 
manufacturer for remanufacturing.

Step 9–Develop Data Access Applications: An 
intermediary builds a digital portal to support 
take-back: owners view eligibility status by zone; 
contractors see removal/packaging instructions; 
OEMs pre-book pickups, generate manifests, and 
issue compensation offers; logistics receives route 
plans. The app runs predefined SPARQL queries to 
retrieve the data needed in the portal. Sensitive 
pricing information and location data appears 
only when an authorized party logs in.

Step 10–Plan Maintenance and Evolution: 
As adhesives, testing methods, or take-back 
programs evolve, the data stewards and 
developers update the data inventories, ontology 
modules, mappings, and queries. When new 
building owners enter the network, OEMs grant 
them read access to selected parts of their data, 
and the intermediary expands the sources of the 
SPARQL queries feeding the digital portal with the 
data of the new building owners, ensuring OEMs 
can reliably retrieve end-of-life tiles as future 
feedstock.
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Closing words

To scale the Circular Economy, we need to scale the 
information flows that underlie a well-functioning 
value network. Luckily most IT infrastructure and 
standards we need are already in place, in some 
cases since many years - it is just about using 
them in a new way, and developing the necessary 
models and tools that guide the users specifically 
when developing CE solutions.

It is most likely the case that you as an organisation 
already have most of the basic prerequisites 
in place. For instance most organisations have 
a web server, either as part of their in-house IT 
infrastructure or as a hosted service, with security 
and access control as part of its basic setup. 
URI lookup and linking are also things already 
supported by our web application and browsers. 
Hence, the step is not too far, to extend this to 
linking also our data!

The challenge is to accept and embrace diversity 
instead of attempting to create (yet another) 
standard or data template to fit all scenarios. 
And to avoid lock-in through commercial APIs 
and formats, but rather focus on open standards 
and shared agreements. Technologies, such as 
ontologies, can be used to manage this diversity, 
create data descriptions and mappings, and allow 
for navigating and making use of the diverse data 
landscape.

On behalf of all Onto-DESIDE contributors,

Prof Dr Eva Blomqvist
Project coordinator
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