ON'Ig-DESIDE

Guide 2

Decentralised sharing of data & information
For a circular and regenerative economy

Funded by
the European Union

Authors (alphabetical order + ORCID):

Eva Blomqvist:
Fenna Blomsma:
Ben De Meester:

Els de Vleeschauwer:
Huanyu Li:

Mikael Lindecrantz:
Vojtéch Svatek:

Edited by:
Eva Blomqvist
Fenna Blomsma

Version:
14th of November 2025

A publication by:
The Onto-DESIDE project

0000-0003-0036-6662
0000-0002-0996-4717
0000-0003-0248-0987
0000-0002-8630-3947
0000-0003-1881-3969
0000-0002-5525-6439
0000-0002-2256-2982

Acronyms/ terminology

API = Application Programming Interface

CE = circular economy

CEON = Circular Economy Ontology Network

CSV = Comma Separated Values

CQ = Competency Question

DPPO = Digital Product Passport Ontology

JSON = JavaScript Open Notation

JSON-LD = JavaScript Open Notation for Linked Data
LOV = Linked Open Vocabularies

MFM = Multi-Flow Method

OBDA = Ontology-Based Data Access

OBO = Open Biological and Biomedical Ontologies
OCP = Open Circularity Platform

OWL = Web Ontology Language

R2RML = RDB 2 RDF Mapping Language

RBAC = Role-Based Access Control (RBAC)

RDB = Relational Database

RDF = Resource Description Framework

RML = RDF Mapping Language

SHACL = Shapes Constraint Language

SPARQL = SPARQL Protocol and RDF Query Language

SSSOM = Simple Standard for Sharing Ontological Mappings

URI = Uniform Resource Identifier

W3C = World Wide Web Consortium

XML = eXtensible Markup Language

YARRRML = Yet Another R2ZRML and RML Language
XD = eXtreme Design

Table of contents

This guide—how it came to be, who it’s for, and how to use it
Why, what and how of Circular Economy
For all circular strategies—from recycling to repair & from reuse to remanufacturing
Decentrally sharing dataan overview of the what, why and how
Step 1—Map information flows: value chains are more than resource flows alone
Step 1—Examples for different circular strategies
Step 2—Define technical requirements: what do users need data for?
Step 3—Build a data Inventory: what data is available or could be collected
Step 4—Enable data sharing: how and by/with whom?
Step 2, 3 and 4—Examples for different circular strategies
Step 5—Ensure semantic Interoperability and Ontologies
Step 5a—Ontology Requirements and Inventory
Step 5b—Ontology Extension
Step 5c—Ontology Alignment
Step 5—Examples for different circular strategies
Step 6—Ensure technical interoperability: data formats
Step 7—Define data transformation: connecting data and ontologies
Step 8—Set up querying: federated querying with SPARQL
Step 6, 7 and 8—Examples for different circular strategies
Step 9—Develop data access applications
Step 10—Plan for maintenance and evolution
Step 9 and 10—Examples for different circular strategies
Closing words

References

10
14
16
20
22
24
28
30
32
34
40
44
50
54
56
58
60
62
64
66
70
72
74

This guide—how it came to be, who it’s for, and how to use it

Why this guide? The Onto-DESIDE project.

The Onto-DESIDE project aimed to accelerate
the transition to a circular economy (CE) where
materials, components, and products are reused
to reduce waste and retain value. At the moment,
circular value networks are difficult to design and
scale because it is difficult to make sense of such
systems as a whole. Second, industries struggle to
form circular value networks due to inconsistent
terminology, lack of semantic clarity, and limited
tools for secure, automated data exchange.

To address this, Onto-DESIDE combined
conceptual and technical innovation, by 1)
creating innovation capacity for circular value
chains, and 2) addressing key technical barriers
to data sharing across industries. It developed
the Multi-Flow Method (MFM), which integrates
resource, energy, value, and information flows
into a systemic view of circular value chains, using
generative tensions to explore root causes to
barriers and find ways to improve functioning and
robustness. The project also introduced technical
solutions: ontologies to model materials,
products, actors and processes, ensuring vertical
(within domains) as well as horizontal (across
domains) semantic interoperability, together with
a decentralised collaboration platform where data
can be exchanged. However, a crucial aspect of
supporting transformation is to provide guidance
in using these new tools: the aim of this guide.

MFM

Multi Flow Method

What was done and how

Onto-DESIDE applied a transdisciplinary and
iterative methodology to develop the new tools
and technologies for circular value networks.
Academia and practice came together, using three
diverse real-world industry use cases selected
for their diversity and complexity—construction,
electronics, and textiles—as testbeds to derive
needs and validate the within- as well as
cross-sector applicability of the solutions.

The project, running from June 2022 to November
2025, was structured into multiple work packages.
One focused on the creation of the innovation
method, a second on ontology development,
and a third on the data-exchange platform. Each
used their own methodology and domain-specific
expertise, respectively, design science methods;
agile ontology engineering practices including
eXtreme Design (XD) resulting in the Circular
Economy Ontology Network (); and the
application of mature open web standards to
create a secure and decentralized interoperable
data sharing infrastructure dubbed the Open
Circularity Platform (). Collaboration across
these tasks makes them comprehensive and
integrated. In uniting top-down research and
standards analysis with bottom-up learning
from use cases, the project created a solid and
actionable foundation for advancing the circular
economy.

Guide 1: Circular value chain design,
development & innovation

Guide 2: Decentralised sharing of

data & information

How to use the guides

There are two guides: one which focuses on
circular value chain development and innovation,
and a second technical guide that is dedicated
to setting up a decentrally organised data-
sharing infrastructure in such a way the data is
interoperable and compatible.

Both guides focus on the practical steps to take
towards better functioning circular value chains.
Each guide discusses the relationship with the
other, soitis clear where they connect. Depending
on your needs and circular maturity level, you
can drive straight into the technical parts, or you
can first spend a moment thinking about the
functioning of your circular value chain and how
to design or improve it. It is up to you to decide
what you need and where to start. Together, both
parts of the Onto-DESIDE project outputs support
the planning and automation of management
and execution of circular value networks at scale,
contributing to Europe’s digital and green Twin
Transition.

For more details, or more technical descriptions
as well as templates, explainer videos, and other
supplementary materials go to our website.

Please visit:
www.ontodeside.eu

ON'Ig-DESIDE

Ontology-based Decentralised
Sharing of Industry Data in the
European Circular Economy

e 12 partners, 7 countries:
o Linképing University (SE)
o Interuniversitair Micro-Electronica Centrum (BE)
o Concular Ug Haftungsbeschrankt(DE)
o +Impakt Luxembourg Sarl (LU)
o Circularise Bv (NL)
o Universitdt Hamburg (DE)
o Circular.Fashion Ug (DE)
o Lindner Group Kg (DE)
o Ragn-Sells Recycling Ab (SE)
o Texon Italia Srl (IT)
° Rare Earths Industry Association (BE)
° Prague University of Economics & Business (CZ)

® From: June 2022-November 2025
e Funding: Horizon Europe
o Grant agreement #101058682

Three use case domains:
e Textile industry

e Electronics industry

e Construction industry

Funded by
the European Union

Who the guides are for

Both of our guides are aimed at anyone who
wishes to engage in circular oriented innovation.
That is: anyone who wants to explore new or
better circular value chains as well as get practical
about data and information sharing to enable this
in practice. Each guide is meant as an entry point
into their respective topics, and they each target
different roles—with an emphasis on the role and
contribution of these different roles to the various
steps in the process. Mainly these two guides
provide an overview and explain what to expect
whilst on this journey. In this, we focus on how
different roles can work together. To this end at
the top of each section, you find an indication of
what roles are typically involved or who is needed
to provide input to complete a step successfully. Of
course, these roles can be different people, or be
one and the same. Organising the guides around
roles clarifies responsibilities and interfaces across
the process, supporting structured collaboration,
aligned expectations, and deliberate progress in
circular-oriented innovation.

Guide 1—See: www.ontodeside.eu
Value chain design, development & innovation:

This guide has a strategic focus, and explores
what currently shapes the value chain dynamics
and how circular strategies can be (better)
supported. The following roles are needed to
successfully complete the process:

Project lead: Coordinates the overall process

‘ in which the method is applied. Ensures
the right people are involved, aligns the
method with the project’s goals, and takes
responsibility for follow-up after sessions and
working groups.

‘ Facilitator: Guides the group through the
Multi-Flow Method. Ensures the process is
structured, that flows, tensions, and patterns
are captured in a way the group can work with,
and that different perspectives are heard.
Decision maker(s): Stakeholder

‘ representatives with the authority to shape
the value chain configuration or influence
(strategic) decisions. To ensure relevance
and actionability, the process should include
different perspectives (e.g., suppliers,
customers, recyclers, logistics providers).

: Bring (technical and practical)
knowledge of specific flows (material,
information, value, energy). They explain
how flows operate in practice and support
the group in understanding constraints,
dependencies, and opportunities.

Guide 2—The guide in front of you now:
Decentralised sharing of data & information:

This guide focuses on the technical side. It
explains how to set up a decentralised, secure
and automated data-sharing infrastructure that
supports a chosen value chain configuration

and the collaborations between the actors
involved. The steps involved in setting up this
infrastructure needs the involvement of different
types of roles in the involved organisations. We
identify 4 such roles:

Decision Maker: May be the value chain
manager, coordinating the setup of the whole
value chain, or merely the internal manager
in charge of ensuring the participation

of a specific actor in the value network
configuration. Additionally, a decision maker
may be a CTO or CIO making decisions about
the IT infrastructure setup and investments.
Data Steward: Any role that produces,

‘ manages or maintains the data that is to be
shared and used in order to make the value
chain configuration work.

: Either an information architect/
data modeller, or a software developer/IT
specialist. These are the roles that will do the
practical work of modelling and transforming
the data, as well as setting up the actual
infrastructure and configuring it.

: The roles within the value chain
organisations that hold the needs for receiving
or sharing the data. For instance, this could
be a person at a recycling facility, needing the
information about incoming used materials in
order to make decisions regarding where to
dispatch a certain batch or container.

10

Why, what and how of Circular Economy

“Take-make-use-lose”

Our global economy operates largely on a linear
model: extract, produce, consume, and dispose
—repeat. This system assumes unlimited access
to resources and an infinite capacity for waste
absorption. But our planet can provide neither:
we are rapidly depleting finite resources and are
overwhelming natural systems with waste and
emissions. Even recycling, often seen as a solution,
only addresses a very small part of the problem
and fails to fundamentally transform how we use
resources. What’s more, this extractive system
entrenches inequality, undermines livelihoods,
and worsens living conditions for many.

For example, resource extraction has already
more than tripled since 1970 and is projected
to rise another 60% by 2060 if the current
path is followed, accounting for over 60% of
global greenhouse gas emissions and 40% of
pollution-linked health impacts®. Such scale
places enormous pressure on ecosystems and
communities. No wonder that the linear economy is
sometimes also referred to as “Take-make-use-lose”?.

Instead...

Our economies will have to change their extractive
practices to sustainable and regenerative ones.
Circular Economy (CE) offers one path through the
application of Re-strategies like rethink, reduce,
retain, reuse, repair, refurbish, remanufacture,
recycle—and a range of related strategies like
composting & industrial symbiosis. The aim is
to better meet the needs of the whole system—
planet, people and businesses—and thereby
encourage different ways of handling waste and
resources, improving resource conservation,
efficiency and productivity. Or: how can we live
comfortably - without costing people and the
planet?

CE is no longer optional, but a must-have

Mounting resource scarcity, increasingly volatile
supply chains and resource prices, intensifying
legislative and regulatory pressure, and rising
stakeholder expectations meanthat CEisnolonger
optional—it’s essential for business resilience,
compliance, innovation, and competitiveness®*>,
Companies that continue to rely on a take-make-
dispose model expose themselves to higher costs,
operational disruptions, and reputational risks,
while those that adopt circular strategies can
secure materials, stabilize supply, and strengthen
their license to operate. Thus, CE is becoming a key
driver of both risk management and value creation.

Likewise, finance and investors are intensifying
the shift of capital toward businesses that
demonstrate circular strategies, recognizing them
as lower-risk, future-fit, and better positioned
to deliver long-term value®. Capital markets
are increasingly embedding sustainability and
circularity metrics into lending, investment, and
valuation models, rewarding companies that
proactively align with emerging standards. Those
who fail to adapt may face shrinking access to
capital, higher borrowing costs, and reduced
investor confidence, while circular leaders
stand to attract investment, partnerships, and
preferential market positioning.

The Challenge

ut... ‘going circular’ is complex. It requires systems
thinking to understand how and why materials flow,
where and why waste originates, and how circular
strategies interact. It requires moving beyond
simplistic models and truly solving problems—
not shift them elsewhere or create new ones.
And: not all circular strategies work at every scale
or in every context, and some may even compete
or create trade-offs. For example, choosing highly

durable composites can hinder recyclability,
and remanufacturing may initially require more
materials—not less. And so on. The challenge is to
design and operate sets of circular strategies that
resolve, go around or balance these tensions and
deliver real benefits. Doing so requires the right
mix of competition and collaboration, clear and
easily accessible data, and adaptive management
across the value entire chain.

For this reason, circular innovation differs
fundamentally from linear or ‘business-as-usual’
innovation. It involves creating virtuous loops—
feedback mechanisms where resources re-enter
the value chain—and generating emergent
properties like sustainability and resilience. These
benefits arise not from isolated actions but from
how the entire system behaves.

inputs Sufficiency,

Material

cascades, "‘
cascaded ™ b
recycling”

cascades”

Component @ @

prevention,

./\ r| reduction,
non-toxicity

£¢ Closing material loops

Reuse components &
remake products

N

More intense use
&

tE' reduced idle time

Product
cascades’

—

of products

. u

Figure: Circular strategies in the use phase, and for products, components and materials.

12

From a linear to a circular mindset

All this means that a different mindset is needed when engaging in circular oriented-innovation. Crucially:
it means creating systems where multiple circular strategies operate synergistically—where, through
collaboration, all actors benefit. Circularity Thinking helps cultivate this new circular mindset.

o

Reconsider why & what Multiple cycles of
rethink... reuse...

1. Flow Structure: One-Way vs. Feedback Loops

e Linear mindset: Resources flow in a straight
line—extraction, production, use, disposal—
with minimal interaction between processes.

e Circular mindset: Resources circulate
and regenerate through feedback loops,
re-entering the system several times (as
products, components, and materials) and
influencing upstream and downstream
decisions over time.

2. Value Creation: Localized vs. Emergent

® Linear mindset: Value is created and captured
at specific points in the chain (e.g. sales,
production)—with opposing and conflicting
interests, resulting in value conflicts.

e Circular mindset: Value is emergent, arising
from how the entire system functions—
through resilience, sustainability, and shared
innovation. Both the whole and the parts
benefit equally.

3. Problem Solving: Fragmented vs. Systemic

e Linear mindset: Problems are solved in
isolation, often within departmental or
disciplinary silos. This leads to displacement
and the creation of new problems.

e Circular mindset: Problems are addressed
systemically, considering interdependencies,
long-term effects, and cross-sector dynamics.

X ﬁxﬁxixﬁx' X

s‘é
..then reman, refurb, -.followedby ..andrecycling
& upgrading... reuse of parts.. of materials
4. Strategy Use: Selection vs. Configuration

Linear mindset: Strategies are chosen
individually—reuse or recycling, efficiency or
durability—as they benefit one actor, often
without considering their interactions.
Circular mindset: Strategies are combined into
configurations, designed to work together
synergistically and allowed to evolve over
time, seeking the addition of more circular
strategies through continuous improvement.

. Innovation Process: Execution vs. Iteration

Linear mindset: Innovation follows a fixed
plan—analyse, design, implement—assuming
predictability and with limited flexibility.
Circular mindset: Multiple innovation

modes operate alongside each other, where
innovation also incorporates processes that
are iterative, involving experimentation,
learning, and the ability to pivot when
assumptions prove incorrect.

. Responsibility: Compliance vs. Stewardship

Linear mindset: Responsibility is often limited
to meeting regulations or minimizing costs.
Circular mindset: Responsibility includes
stewardship—ensuring that circular strategies
address real problems and no new ones are
created elsewhere in the system. And: that the
needs of all parts of the system are served.

Value-, resource- & information-flows
Therefore, to design, improve, and operate a
circular way of working it is essential to adopt a
value chain perspective - sometimes also called a
value network. This is because circularity cannot
be achieved in isolation—materials, components,
products, as well as benefits and impacts flow
across multiple actors and stages. Only by seeing
how decisions in one part of the chain affect
others can businesses understand how shared
benefits can be created and value captured and
to design circular strategies that synergistically
reinforce each other. This perspective also
highlights trade-offs and tensions that must be
managed collectively, rather than pushed onto
individual actors, if the system is to function.
Data and information play a critical role in this: they
provide the transparency needed to track resource
flows, identify where waste and inefficiencies occur,
and coordinate action across suppliers, partners,
and customers. Without accurate, shared and
frictionless access to information, circular value
chains cannot be designed effectively or operated
at scale.

This guide
To help with this, the Onto-Deside project created
the following guidance and support for:

e \Value chain design, development & innovation:
gaining insight into the root causes of barriers
and enablers that shape the behaviour of value
chains, and examining how this dynamic can
(better) support circular flows.

e Decentralised sharing of data & information:
understanding data needs and availability,
formats, and aligning the data to a shared
domain model, the Circular Economy
Ontology Network (), setting up an Open
Circularity Platform ()—data-sharing such
that data becomes interoperable, but where
control over what to share with who and
when remains with the data owners.

The guide in front of you covers:
e Decentralised sharing of data & information.

Please find the other guide at:
>>> www.ontodeside.eu

13

For all circular strategies—from recycling to repair & from reuse to remanufacturing

To help bring the guidance to life and offer concrete examples to illustrate our methods, here are 4 short
examples of different circular strategies that we’ll refer back to throughout this guide. Although these
scenarios (A to D) address different strategic priorities, they have the same needs in common. Each
actor in the network must be able to selectively share its data, based on ever-changing business needs.
Meanwhile, to track resource flows across stakeholders and make appropriate decisions, a common

understanding of this shared data is needed.

(A) Beginning-of-life: using recycled input

What: Cross-sector recycling of apparel waste
into feedstock for floor tiles.

Why: To unlock circular business models, and
help to find the right recycled feedstock through
product passports and secure data exchanges.

A product manufacturer creates a performance
shoe using inputs from various material suppliers,
each contributing data to a shared platform for
product passports using standardized formats.
Once the shoe reaches end-of-life, a recycling
operator disassembles it, guided by digital
instructions, and extracts the rubber outsoles and
textile laces that are made into new bulk materials.

These recovered materials are listed on a digital
marketplace, enriched with a certificate and
metadata including composition, condition, and
recycled content. Next, a materials processor
identifies suitable batches and requests pricing
via the platform. After purchase, the recycled
inputs are turned into materials that an interior
outfit company uses for acoustic floor tile layers.
Certificates and material data travel along, and
a new product passport is generated for the
product.

(B) Middle-of-life: repair

What: Repair of an audio system through access
to reliable spare parts and instructions.

Why: Automating sustainable asset management
through digital tools to enable easier data
management, whilst protecting sensitive data.

A building owner identifies a malfunction in the
installed audio system. Using a data exchange
platform they access repair instructions and
discoverthatthe original equipment manufacturer
offers a repair service. The component is sent for
repair, and the manufacturer replaces the faulty
speaker with a newer model containing a higher
amount of recycled content.

The repaired unit is reinstalled, and updated
product data is published and added to the
building’s digital twin, including material
composition and sustainability attributes. Digital
product passports record both original and
repaired versions, tracking components and
their environmental impact—including recycled
content, origin, and certifications—automating
the management of building information.

(C) End-of-life: reuse

What: Reuse and resale of a door for use in other
building projects.

Why: Linking supply & demand through a digital
market place for second-life parts & components.

A building owner, preparing for demolition,
assesses the reuse potential of installed
elements, such as doors, for repurposing through
resale. This information is used by the demolition
contractor to negotiate a fair price for the
building’s demolition, and sets the frame for what
demolition methods will be used.

To find a new use, the building owner lists the
components, including the doors, on a digital
marketplace—provided by an intermediary for
sale to construction companies for reuse in new
projects. Metadata such as dimensions, condition,
and installation history are shared, and enriched
with images, enhancing buyer confidence. Pricing
information is managed securely via decentralized
data pods, ensuring only authorized parties can
access commercial terms and optimising the value
for the building owner. Planning considerations
are automatically taken into account.

e

(D) End-of-life: remanufacturing

What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Why: Enabling manufacturers to take-back their
products, ensuring access to future feedstock.

At the end-of-life stage of a building, a building
owner initiates a demolition plan and assesses
reuse and recovery options for installed
components. Among these, the acoustic floor
tiles—originally made with recycled feedstock
from apparel waste—are identified as having high
reuse potential, but not in their current condition.

The owner contacts the original tile manufacturer,
who offers a take-back program. Through a
data exchange platform—facilitated by an
intermediary—the manufacturer provides
pricing and logistics information for reclaiming
the tiles. The tiles are returned, inspected, and
remanufactured into new flooring systems,
integrating both recovered and new materials.
This process reduces raw material demand and
preserves embedded value.

16

Decentrally sharing data—an overview of the what, why and how

Data & information sharing and management
Circular economy innovations along value chains
depend on collaboration across multiple actors—
from material suppliers to manufacturers,
retailers, and recyclers. But collaboration is
only effective if it is built on a foundation of
reliable, consistent information and if it respects
competition, too. This is why data and information
sharing is not a side issue but a central enabler of
circular value chain innovation.

Every circular practice—whether it is product-
as-a-service, reverse logistics, reuse, or high-
quality recycling—requires transparency about
what resources exist, where they are, and in
what condition. If one actor knows the material
content of a component but cannot share it
in a usable way with others, opportunities for
reuse or recovery are lost. Similarly, without
trusted information flows, it is hard to coordinate
responsibilities, design for reuse, or match supply
and demand in secondary markets.

The challenge is that different organisations often
use different terms, classifications, and IT systems.
What one company calls a “part,” another might
describe as a “module.” And the same term,
such as “product”, may mean different things
depending on the actor's perspective: what is
someone’s product may be another’s material
or component. Also: data that is meaningful in
one system may be unreadable or misleading in
another. This is why aligned ontologies—shared
ways of structuring and describing information—
are critical. Just as having a technical standard
makes it possible to plug components together,
having an information standard with clear
semantics makes it possible to plug data together.

This is where a data-sharing platform comes in:

it becomes the infrastructure that operationalises
this alignment. It ensures that information about
resources, processes, and transactions can flow
securely and consistently across the value chain.
Platforms can host material passports, product
IDs, or usage histories, making them accessible
in formats that others can understand, trust and
act upon. With such systems, businesses can
make informed choices about design, reuse, or
recycling, and policymakers can monitor progress
without imposing excessive reporting burdens.

Seen this way, data and information are the
bridge between circular economy ambitions and
their practical realisation. Value chain innovations
create the demand for shared knowledge;
ontologies and data platforms make it possible
to meet that demand in ways that are consistent,
scalable, and verifiable. Without them, circular
strategies risk being isolated pilots. With
them, they can be connected into frictionless
circular ecosystems where information flows as
seamlessly as materials—whilst keeping what
matters safe.

This guide contains more information both on:

e Ontologies for CE—and the use of , Which
is a reusable set of core ontology modules that
can be extended to fit virtually any CE use case.

e How to set up a decentralised data sharing
platform—and how the , Which is one such
platform, allows for sharing data in a secure
decentralised manner.

Both and are outputs of the Onto-
DESIDE project and are freely available. Before
going into the process of how to use these two
tools, first we explain a little bit more about the
foundations these two tools were built on.

Why decentralised?

In the Onto-DESIDE project we focused on
decentralised data sharing solutions as it has
certain benefits over centralised data sharing.
Unlike centralised systems, where all information
is collected, stored, and managed by one party,
decentralised approaches allow each of the
participating organisations to retain control and
responsibility. This avoids the risks of bottlenecks,
single points of failure, or power imbalances
where one actor owns or controls the entire
dataset. It also increases flexibility to integrate
diverse data sources and adjust to evolving technical
standards. In practice, decentralised approaches are
often more acceptable to diverse actors, making
collaboration possible in complex value chains.

This is especially relevant in a circular economy,
where no single authority governs the system
and collaborations can span multiple value
chains, across multiple domains and participant
constellations, and involve multiple circular
strategies. Each actor brings its own priorities,
IT systems, and sensitivities, which makes
centralised data systems difficult to accept for
many. For reasons of security and confidentiality,
organisations also want to retain sovereignty over
their data: deciding what to share, with whom,
and under what conditions. Decentralised data
sharing enables this by allowing data to remain
in an organisation’s own systems, on their own
premises, while still making agreed portions
accessible to partners. In this way, sensitive
business knowledge is protected, collaboration
barriers are reduced, and trust between partners
can grow—creating the conditions for more
open, yet secure, circular value chain innovation.
By distributing control in this way, decentralised
systems reflect the distributed and collaborative
nature of circular economies themselves.

Scaling through automation and standardization
In order to scale the circular economy to cover
virtually all material flows in our society, the
information infrastructure needs to focus on
automation and be built to scale. Each actor in a
circular economy must connect with many other
actors of different types and over long periods of
time—an unmanageable task in practice unless
current ways of exchanging information, such as
phone calls and emails, are largely replaced by
more automated solutions.

Apart from the technical scalability of the
solutions, for instance, being able to handle big
data, return query results in a timely manner and
so on, this also means that automation needs
to increase in all steps of the value chain setup
and management. While decision making still
needs human oversight, automation should be
the target for all the frequent interactions along
the value chain. This means that data sharing and
access should be automated, with as little manual
configuration as possible at setup time, and ideally
no human intervention at execution time. For
instance, adding new actors and their data sources
to the network will likely involve some human
mapping and configuration effort, e.g. to set up a
sharing endpoint and provide access rights, but at
runtime the exchange should be automatic.

This in turn implies that data sharing needs to be
based on standards: not require every other actor
in the network to adopt yet another technology
or data format into their IT infrastructure, but
to use what is already available and proven to
scale. It also means that data sharing needs to
be based on agreed vocabularies, i.e. ontologies,
as the language for interchange of information.
Ensuring not only technical but also semantic
interoperability of the information to be shared.

17

18

What is available

The Onto-DESIDE project has developed and demonstrated one way to set up such an infrastructure: it
is decentralised, secure, based on existing and emerging web standards, and supports a high degree of
automation in data sharing and access. Over time, individual components can be replaced—for example,
new software tools for hosting and managing data may appear—but the overall approach to designing and
implementing the infrastructure, as described in this guide, remains valid. This guide therefore focuses on
the key steps needed to decide how to set up such an infrastructure, how to build applications on top of it,

and what kind of work is involved in actually implementing and running it in practice. The life-cycle process
described in this guide consists of ten steps. It starts with understanding the needs of the intended value
chain configuration and ends with maintaining and evolving the infrastructure once it is in use by value
chain actors. The guide can be used by decision makers to understand which considerations are involved
in setting up such an infrastructure, and by technical teams as a high-level overview and checklist when
implementing it within an organisation or across a network of organisations.

Parallel steps coming together

..........

Map the flows Define Build a Enable data Ensure sematic
Understand the technical req’s data inventory sharing interoperability
value chain setup From flows to Identify available Set up exchange Align to standards
incl. information flows requirements and missing data infrastructure and ontologies

Figure: The process for setting up your decentralised data infrastructure,

a3\ EE S
D) 5

Ensure technical Define data Setup Develop Plan maintenance
interoperability transformation querying data access & evolution
Agree on Translate internal ~ Turn requirements applications Keep the system
data formats data into open into federated Create end-user future-proof
formats queries interaction tools

starting with a strategic phase, followed by increasingly technical development.

19

20

Step 1 - Map information flows—value chains are more than resource flows alone

Responsible role: ‘ Decision maker(s). Participants: ¢» End users who will practically implement the flows.

> See also Guide 1:
Value chain design, development & innovation

Resource flows

Guide 1 introduces a set of tools from the
Circularity Thinking innovation methodology
to support developing what (set of) circular
strategies may be used in a given situation.
It is a life-cycle and systems-based approach
that “follows the flows”: always asking where a
resource comes from, where it goes, what forces
drive this, what impacts it creates—and how
these flows can be improved to become more
circular and regenerative. This analysis helps
to design how resources should flow in a value
chain. But resource flows are only one part of
the story: to ensure robust and well-functioning
circular systems, the methodology also includes a
range of other essential flows.

And also: value-flows...

For circular value chains to function at scale, value
flows matter greatly. They determine whether
circular strategies make business sense. A
product may be recyclable, but unless customers,
producers, and/or regulators agree on the value it
creates, it may never be adopted. Value includes
not just money but also environmental and social
benefits. For instance, a take-back scheme for
electronics only works if customers see value in
returning devices, and businesses can capture
value from resale, refurbishment, or recycling.

... energy flows...

Energy flows can be equally critical, as every
resource loop consumes or saves energy. Some
circular processes are far more energy-intensive
than others—for example, melting metals back
for recycling requires much more energy than
reusing a part. Factoring in these energy costs

can therefore be important when choosing which
circular strategies make the most sense. At the
same time, energy flows can also enable circularity:
waste heat from one factory can power another,
renewable electricity can drive recycling processes,
and smart grids can synchronise production with
peaks in renewable supply, making processes both
more sustainable and cost-effective.

... and information flows!

But without reliable data on resource condition,
origin, or composition, resources remain invisible,
untrusted, and underused. And likewise, without
trustworthy information about the actors
involved and the processes they apply, circular
collaboration cannot be orchestrated effectively.
Companies need to know who potential partners
are, which standards they follow, and how their
practices align with environmental, social, and
economic requirements. Without this visibility, it
becomes difficult to discover promising partners,
evaluate risks, or configure value chains that are
efficient and resilient. In this sense, information
flows are the backbone of circular systems.

Just as materials, parts, and products circulate
through supply chains, the data describing them
must also flow—through mechanisms such as
digital product passports, certification schemes,
or open data platforms—to guarantee traceability,
compliance, and quality assurance. Construction
firms, for example, rely on material passports
to verify that reused doors and windows meet
safety standards, while fashion brands depend
on accurate fibre content data to enable textile-
to-textile recycling at scale. Only when such data
travels consistently, transparently, and across
organisational boundaries can circular systems
expand beyond isolated pilots and mature into
trusted, efficient, and resilient networks.

With enabling infrastructure

Each type of flow also requires its own enabling
infrastructure. Logistics hubs and processing
plants support resource flows; value flows
need contractual, accounting, and financial
mechanisms that allow costs and benefits to be
distributed fairly; energy flows require renewable
and smart grids to match supply and demand
efficiently; and information flows depend on data
standards and digital platforms to ensure that
actors can exchange reliable, trusted data.

Truly circular value chainsintegrate all four flows—
resources, value, information, and energy—with
infrastructures designed to move them smoothly.
To not do so, risks creating bottlenecks.

Understand the whole to set information needs
Guide 1, and in particular the Multi-Flow Method,
helps circular innovators look at each flow in a
value chain and understand what is driving it, and
how the different flows influence one another. By
working with what we call generative tensions,
the method uncovers the underlying causes
behind sets of barriers and enablers, instead of
only dealing with their symptoms. Taken together,
these insights provide a systemic perspective on
how flows, actors, and constraints interact.

In practice, working through the steps of the
method provides a systemic overview that shows
where challenges lie and what information is
needed to address them. Mapping the flows
reveals where data is missing, siloed, or poorly
connected, and where sharing is critical for
effective collaboration.

Clarifying flows and their interconnections
exposes leverage points for greater circularity and
shows how information underpins collaboration.

This analysis highlights gaps in transparency,
duplication of effort, and weak or misaligned
incentives for data sharing, thereby ensuring
that technical solutions are grounded in the lived
realities of actors across the value chain.

The insights gained—such as identifying actors,
clarifying information needs, mapping existing
data, highlighting gaps, and exposing barriers—are
an essential starting point. However, at this stage
they remain too high-level to guide infrastructure
design. Subsequent steps (2 and 3) are therefore
required to translate them into detailed technical
requirements and system specifications.

21

Step 1—Examples for different circular strategies

The process explained in Guide 1 Value chain design, development & innovation serves to map the
current as well as the desired circular flows: resources, value, energy (if needed) and, of course,
information flows—who moves what, who benefits, with which evidence. This shared picture is then
examined through the lens of recurring tensions—Individual vs. Collective Interest, Robustness vs.
Adaptability, Concentration vs. Distribution—so that real bottlenecks surface. This enables targeting the
highest-leverage frictions rather than symptoms, to guide value chain design and improvement. For our
four circular strategies, we illustrate below what insights can be used to kick-start the development of
new data and information sharing infrastructures. See for more detail on the analysis Guide 1.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel
waste into feedstock for floor tiles.

Current undermining tension—Individual vs.
Collective Interest: Each actor optimizes for
self-protection. Suppliers upload batch “proof”
as PDFs with metadata at different levels of
confidence and granularity (“rubber=20%"), but
keep sensitive fields—phthalates, heavy metals,
formulations—offline. Recyclers list vague tags
(“post-consumer, clean”); processors and buyers
can’t verify claims such as “<0.1% phthalates”
or binder compatibility without seeing company
secrets. Suppliers won’t risk exposure; buyers
won’t risk non-compliance. Deals fail not for
technical reasons, but because evidence can’t be
shared selectively.

Improvement opportunity for data flows: Apply
governed, selective disclosure. Certificates
become machine-readable and are mapped to
shared terms; sensitive results are issued as
verifiable credentials with field-level, purpose-
bound access and audit trails. A supplier can prove
“Batch X meets limit Y” without revealing spectra
or recipes. Predefined queries check compliance
across decentralized stores, preserving ownership.
With accountable, granular sharing, trust rises
and qualified recycled batches can flow—opening
trade across sectors. It is decided to create this.

(B) Middle-of-life: repair
\ What: Repair of audio system through

access to reliable spare parts & instructions.

Current undermining tension—Concentration vs.
Distribution: Repair data, diagnostics, and spare-
part info are locked behind OEM portals and
contracts. Access to repair guides, compatibility,
and pricing is controlled by OEMs, while building
owners must scrape PDFs or call helpdesks, and
updating a building’s digital twins is cumbersome.
This erodes trust, invites errors, and tilts decisions
toward replacement: unable to verify “fit-for-use,”
and nudged by warranties and liability, owners
replace rather than repair—driving premature
end-of-life and extra cost.

Improvement opportunity for data flows:
Apply governed, selective disclosure. That is:
encode diagnostics and compliance as verifiable
credentials; grant time-limited, purpose-bound
access to repair data; and automatically sync
updated composition and sustainability attributes
to the digital twin or product passport after
repair. This aligns incentives—owners get proof,
OEMs keep control—ensuring access to reliable
parts and streamlined data updates, letting repair
outcompete replacement. Creating this capability
develops into the focus of the next nine steps in
the process.

(C) End-of-life: reuse
. What: Reuse and resale of a door for use

in other building projects.
Current undermining tension—Robustness vs.
Adaptability: Ahead of demolition, doors are
assessed and listed, but rigid, document-based
formats can’t capture real-world variability. Key
fields—dimensions, swing, interfaces, material,
glazing, ratings, condition, and install history—
are missing or incomparable so buyers can’t test
fit for new projects. Planning constraints aren’t
linked, and commercial terms sit in scattered
PDFs. “Robust” formats (reports, photos) are
too static to support confident pricing for reuse,
so building owners accept conservative offers or
default to disposal.

Improvement opportunity for data flows: Enable
machine-readable door passports with geometry,
interfaces, ratings, condition, provenance, images,
and location, using shared vocabularies and
verifiable credentials. Sync planning constraints
automatically and manage contracts decentrally
so only authorized parties can access them.
Interoperable APIs let marketplaces and builders
auto-check fit and code, improving negotiation
with the demolition contractor and enabling
confident resale into new projects. Putting this in
place becomes the main concern of the project
that follows.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Current undermining tension—Individual vs.
Collective interest (Take-back): At end-of-life,
owners and demolition crews optimise for
speed and lowest cost, while the OEM needs
predictable, quality-controlled returns to plan
remanufacturing. Crucial evidence—lot IDs,
composition/binder, contamination risk, install
zones, uninstall technician, custody—sits in PDFs
or isn’t captured. With incentives split and proof
missing, tiles are cherry-picked or downcycled,
and OEMSs can’t secure stable and reliable
feedstock for remanufacturing.

Improvement opportunity for data flows: Use
governed, selective disclosure. Issue machine-
readable passports with lot/composition/binder/
condition; attach verifiable credentials for “fit-
for-return” and chain-of-custody. Publish reverse-
logistics slots and price bands via decentralized
pods (with commercials only to authorised
parties). Predefined queries in planning tools
auto-route eligible tiles to the OEM, aligning
incentives and making take-back predictable and
scalable. Enabling these solutions is what the next
steps are about.

24

Step 2—Define technical requirements: what do users need data for?

Responsible role: ¢» Developer. Participants:

With the systemic insights from step 1 in place,
the next task is to translate them into actionable
technical requirements (step 2). This involves
capturing the identified needs in the form
of user stories, which describe in detail how
different actors are expected to interact, what
information should be exchanged, and under
what conditions. These user stories serve as the
requirements of the decentralised data-sharing
infrastructure and its potential applications.
Alongside functional requirements that specify
system capabilities, it is equally important to
capture non-functional requirements, which
relate to aspects such as security, speed, and
reliability.

Why user stories?

User stories are a tool used in software
development that make complex requirements
tangible and easy to communicate. Instead of
long technical specifications, they are short,
plain-language descriptions of what an end user
wants to achieve and why it matters. The format
is deliberately simple—“As a [user], | want to [do
something] so that | can [achieve a goal]”—yet
powerful in keeping the focus on outcomes rather
than features.

The value of user stories lies in bridging strategy
(whereStep 1offeredinsights)andimplementation
(from Step 3 onwards). They translate abstract
system needs into concrete scenarios that reflect
how people will actually interact with the system,
ensuring that technical design choices align with
business priorities and user expectations. In the
context of decentralised data sharing, this could
mean expressing requirements around how
suppliers, manufacturers, or recyclers access and
exchange information in ways that build trust and
efficiency across the value chain.

End users holding the needs.

By capturing both what the system should
do (functional requirements) and how it
should perform in practice (non-functional
requirements), user stories provide a structured
yet flexible foundation for development. They
make it easier for diverse stakeholders—business
leaders, technical teams, and end users alike—
to work from a shared understanding, reducing
the risk of misaligned investments or impractical
solutions that hinder instead of help.

How to make user stories

The process of producing user stories needs
input in the form of documented value chain
information flows as described in step 1. In the
previous step concepts such as actors, process,
actions, and needs are described on a high level.
These are further detailed in user stories as text
using a structured format.

Each user story is a specific expression of a
distinct need or interaction and will therefore
differ from others by focusing on the perspective
of a particular actor, a particular task, and/or a
particular information requirement. Therefore,
creating a broad set of stories is encouraged,
since diversity ensures that requirements are
captured from all relevant viewpoints and that
no critical gaps are overlooked. Documenting
these stories also helps to surface assumptions
and make implicit expectations explicit, which
supports alignment across stakeholders.

But as the number of user stories grows, there will be
some stories that make more sense to be implemented
before others. Prioritisation is not only about urgency;,
but also about logical sequencing—some stories may
only deliver value once others are in place, while
some serve as enablers for multiple others. Such
dependencies should be noted in the stories.

Elements of a user story

User stories contain a number of common
elements and each story is assigned a unique
identifier (such as a number). Below more on the
template used.

e Asa [user]...

The "As A" part is to be interpreted from the
perspective of a certain actor or role that
needs to perform an action. For example: you
could examine the role of a building owner, a
deconstruction company or a recycler, but also
detail it further to represent specific roles within
those organisations, such as an architect or a
purchasing agent.

e ../ want to [do something]...

The following "I want", is a detailing of what
needs to be done. For example, when dealing with
information flows: one actor may be interested in
understanding what options for treatment of a
broken product exist, another may want to know
how to dismantle something, and another may
be interested in knowing the composition of a
batch of materials. However, actions could also
be concrete physical things that should happen,
such as shipping a product, or melting a batch
of raw materials. The latter may however be less
relevant to the information sharing infrastructure,
so try to keep the focus.

® ... so that I can [achieve a goal].

The "So that" describes the intended result or end
state after the action is performed. For example:
execute a repair, plan for processing and logistics,
or make decisions on purchasing materials and
planning production. Again, keep in mind that
the focus is here on the value chain setup and
execution, so goals should be aligned with the
mapped flows from Step 1.

e Additional information

This is a more detailed description of the situation
or context that may be added to allow you to
understand the conditions under which a user
story applies, and potentially any secondary
consequences or constraints.

e Data need

Here you place a description or list of the
information that the user would need to complete
the task described in the above. This can be a list
of data sources needed, or if possible a detailed
list of data points.

Functional and non-functional requirements

By capturing technical requirements in the form
of user stories, the needs from a user perspective
are captured together with additional contextual
information that further adds to understanding
the need and how to address it. These make up
the (initial) functional requirements.

But apart from the functional requirements
on the system there are also non-functional
requirements, such as security, privacy, usability
and performance. These should be considered
too, as they are also essential for a smooth use
and operation of the final system. In Onto-DESIDE
we used grouped lists, where requirements were
grouped under their respective heading, e.g.

» u

“security”, “usability” and so on. For example:

Security
e It should not be possible to manipulate source

data by an unauthorized actor.

e It should not be possible to manipulate data in
transit by an unauthorized actor.

e The platform’s source code can be uploaded
to a public repository (e.g. GitHub, Bitbucket)
under an open-source license.

25

26

Who to involve to make user stories

The work of writing user stories is a collaborative
process between the stakeholders involved in the
value chain and are preferably done together,
in person, so that uncertainties and nuances in
perspectives are discussed and agreed upon. It
is important to make sure that the different user
roles appearing under “As a [user]...” are actually
involved in this process, so as to validate the
needs and the understanding of the context.

User stories would most often be written by a
developer or systems engineer, with end users
describing their needs and how they should be
achieved in the system. Additionally, there needs
to be a prioritization in what requirements are
most important and in what order they need to be
addressed. To do this prioritization architectural
needs as well as functionality needs have to be
weighted against each other. This prioritization
could be done by a senior developer or a systems
architect, someone with the authority, overview,
and experience to make the correct judgements.

Next steps

Next, these user stories will be the basis for further
detailing data needs in Step 3. Step 3 focuses on
cataloging what data is needed to meet the needs
specified in the user stories. Additionally, the non-
functional technical requirements (together with
the outcome of Step 3) will be used in step 4 as
input to designing a suitable data sharing platform
and in Step 5 to derive ontology requirements.

User stories based on the use case examples
Based on the circular strategy examples in section
two possible user stories using the Onto-DESIDE
template could look like this:

Story: repair-05

Depends on stories:
repair-03, recycling-07, logistics-02

As a [user]: Building owner

| want to.... [do something]

To be notified when a piece of installed electronic
equipment in my building is faulty and needs
repair or replacement.

So that | can: ... [achieve a goal]:

Investigate the status of the faulting equipment
and initiate relevant actions to restore it to a fully
functional state.

Additional information:

Afacility management systemisin place and caters
for providing information about the building and
its health. This system is the primary interface for
the building owner in maintaining and acting on
data related to the maintenance of the building
and its components.

Data need:

e Structural information for locating equipment
in a building

e Data on installed equipment/components and
contact information to suppliers

e Maintenance and repair information for
installed equipment

Story: deconstruction-01

Depends on stories:
recycling-02, logistics-01, manufacturer-07

As a [user]: Deconstruction company

I want to.... [do something]

To have detailed instructions on how to
deconstruct and handle floor tiles so that they
can be reused or used as recycled raw material in
producing new floor tiles.

So that | can: ... [achieve a goal]:
| can dismantle floor tiles in the correct way and
plan for the correct logistics of them.

Additional information:

A deconstruction company is subcontracted
by the building owner and will manage the
deconstrution of the building part according to a
contract. As part of this contract, different circular
strategies will be considered.

Data need:

e Structural information for locating equipment
in a building

e Data on installed equipment/components

® Instructions on how to dismantle and handle
floor tiles

e Information on circular strategies applicable
for the specific floor tile

> See also User Story Template:
www.ontodeside.eu

27

28

Step 3—Build a data inventory: what data is available or could be collected

Responsible role: ’ Data Steward(s). Participants: ¢y End users, to verify that data meets their needs.

Once the information needs are clear, a data
inventory is needed. This inventory establishes
what data is available, which actor has the
needed information, what restrictions on sharing
it with others exist, and in case no data exists:
could it be collected, how, and by whom? This
step may also result in revising the requirements,
since some of them may be unrealistic in light
of the data collection they entail, or because of
restrictions on data access.

What is a data inventory

During the previous step, the data needs
surfaced. However, it is hardly ever the case that
the information you need perfectly matches the
information you already have. To assess this, we
first need an overview of the information already
available—we need to build a data inventory.

A data inventory is a structured overview of the
datasets you have access to and are relevant
to address the user stories defined in Step 2 —
Technical Requirements. These datasets can be
internal or external, private or public, and are
typically heterogeneous. That is: they typically
encompass a variety of data formats (e.g. JSON,
XML, CSV) and data structures (e.g. different
database table schemas for different applications),
often requiring careful analysis and management
to ensure consistency and usability across systems.

This structured overview allows you to
understand which informational gaps exist in
your organization, and allows you to prioritize:
either focussing on filling those gaps to cover all
user stories, or focussing on the user stories that
can be fulfilled with the existing set of data at
your disposal, thereby guiding efficient resource
allocation and more informed decision-making
throughout the development process.

How to build a data inventory

A data inventory is typically documented in a
structured format, such as a spreadsheet as
illustrated on the next page, to ensure consistency
and ease of use.

The process begins by taking each user story as
input and answering the following questions:

e What data is required to resolve a user story?
e And: does this data already exist?

If the data exists, a description of the relevant
datasetisaddedtotheinventory. For each dataset,
the following aspects may be documented:

e |ocation, format and access—Where is the
dataset stored, in which format, and how can
it be accessed?

e Ownership and governance—Who owns
the dataset, and what usage restrictions or
policies are applied?

For each dataset, the data elements (e.g. columns,
keys, or references) should also be described:

e Definition: What is the meaning of the element?

e Relevance: For which user story is this
element relevant?

e Sensitivity: What is the sensitivity level of the
element?

® Access restrictions: What access restrictions
apply? Who is allowed to see this data element?

e Data granularity: Can the raw value be shared,
or only a derived or aggregated value?

This level of detail ensures that the data inventory
not only supports technical implementation but
also complies with governance, security, and
privacy requirements.

If the required data does not exist, the next step
is to analyze whether it can be collected and
captured, and if doing so would be worthwhile.

A living document

A data inventory is a living document: building it
is not a one-time task, but an iterative process
that evolves as new information becomes
available. Any change in a dataset that is part
of the inventory—such as new data elements or
revised access policy, but also the creation of new
datasets—leadsto an update of the data inventory
and to potentially revisiting the subsequent steps
in this guide. By maintaining this iterative and
structured approach, a data inventory remains
accurate, useful, and aligned with project goals. In
addition, it provides a reliable reference point for
all stakeholders, reducing confusion and ensuring
that decision-making is consistently based on the
most recent information available.

ID Description Format | Access

DS1 Building structural XML \\drive\buildings.xml
info

DS2 Equipment registry Csv \\drive1\equipments.csv

DS3 Supplier contact info JSON https://procurement/api/v1/suppliers

facility manager

facility manager

procurerment manager For internal use only

The hard part of building and maintaining such
a data inventory is the human factor. That is:
finding out which datasets are available to you
and reaching a common understanding of what
the existing data is about. In some cases also
confidentiality of data can be a challenge, e.g. if
eventhe presence of some dataelements andtheir
structure is considered confidential. However,
the maintenance of such a data inventory can be
done using a simple spreadsheet.

Review user stories

During the process, it may become clear that
some user stories are not feasible because the
necessary data is missing or cannot be accessed.
In such cases, the user stories should be revised
or marked as unresolved. These unresolved
elements can be revisited in future iterations if
new datasets become available.

Owner Remarks

Read-only access for rexternal
repairers is allowed on equipment
level during the period of the repair.

id of location (room, corridor ...)

jocation where the equipment is located)

id under which the product model is

known by the supplier o

model
date of the installation of the

installation_date X
equipement

total cost of the equipement at the

cost ;
moment of installation

Definition Sensitivity |Remarks

id id of the equipement medium
medium

supplier supplier of the equipement medium

medium

high

Linked User Stories

repair_05, deconstruction_01, procurement_07
repair_05, deconstruction_01, procurement_07
repair_05, deconstruction_01, procurement_07
repair_05, deconstruction_01, procurement_07

repair_05, deconstruction_01, procurement_07

Only cost ranges per 1000 euro

may be shared. procurement_07

Figure: Example of a data inventory.

29

30

Step 4—Enable data sharing: how and by/with whom?

Responsible role: ¢» Developer. Participants: * Decision makers responsible for including relevant actors.

Thisstep builds onthe userstoriesand the outcomes
of the data inventory outlined in the previous steps.
That is: now that you know what data is available
or will be generated, and you know when and how
actors want to exchange this information, and
under what conditions—you are ready to decide
what kind of data sharing infrastructure is needed.
Translating these needs into practice requires
more than internal IT systems—it calls for data
infrastructure that supports secure, scalable,
and standardised sharing across organisational
boundaries. Next, we focus on what is needed
specifically for decentralised data sharing.

Why additional data infrastructure is needed
Data can relatively easily be shared internally
using existing organisational deployments, e.g.
by providing access to an internal SAP system, or
maintaining datasets on aninternal FTP server. While
sufficient within one company, these approaches
break down when collaboration extends to
multiple organisations. Getting updates of different
datasets—which, as we've seen in Step 3, are likely
to encompass various data formats—would require
fetching updates via each different protocol and
manually integrating those different changes. This
is time consuming and easily results in errors.

The web and the Solid protocol

Instead, we can make use of the Solid protocol,
which builds directly on the global document
sharing infrastructure of the web. By exposing
data through web APIs in a controlled manner,
information becomes globally accessible while
relying on open standards and widely available
tools, often at little or no cost. This move from
closed systems to web-based infrastructure
makes cross-company data exchange feasible at
scale. It simplifies technical integration, lowers the
barriers for new partners to connect, and creates

a more resilient ecosystem where information
can flow consistently across organisational
boundaries without costly custom solutions. For
businesses, this means faster onboarding of new
collaborations, reduced IT maintenance, and a
clearer path to scaling pilots.

Within the Onto-DESIDE project, the Solid protocols
have been applied to support decentralised data
sharing. These protocols are a set of open standards
(based on the RESTful architecture style for web API
design) that specify how secure but granular data
sharing can take place on the web. In essence, they
define the requirements of a Solid server: how a web
server should respond to data updates and request
calls, and how this aligns with authentication and
authorization protocols so that data can be shared
securely. Think of a Solid server as a type of Google
Drive or Dropbox, but then for individual data points
instead of documents, with sharing across platforms.

In practice, this means that one or more Solid
servers, all using the same API, can scalably
manage the pieces of data to be shared with
other (internal or external) parties. Deploying a
Solid server allows to more easily adhere to the
same standards, making it easier to integrate
your own data with that of your partners—and
vice versa. Because each organisation maintains
its own Solid server, the approach naturally
supports decentralised data sharing: every actor
keeps control over its data while still enabling
interoperability across the value chain.

Solid is a compelling infrastructure choice because
it combines control with openness, aligning
technical efficiency with business trust. It provides
the foundation for scalable, trustworthy data-
sharing ecosystems that transform collaboration
into lasting competitive advantage.

Sharing data: servers, workspaces and pods
Within a Solid server, multiple workspaces can
be defined. Each workspace is informally called
a Solid pod. When you create an account on
a Solid server, you receive an account ID in the
form of a URI, called a WebID. Access rights are
then managed by linking WeblDs to specific data
resources and defining the type of access each
account has (e.g. read-only, read-and-write,
or administrator). Data can be partitioned into
resources, giving you full control over storage,
grouping, and sharing. The next step is choosing
the infrastructure to host your Solid server.

Decide on the infrastructure

To make use of the Solid protocols, a Solid server
is needed. As with any Software-as-a-Service, the
strategic ‘Build, buy, or rent’ choice arises:

® Build: Develop software or technology from
scratch, creating a highly customised solution
and potential competitive advantage. This
requires significant time, skill, and resources
but allows full tailoring to specific needs.

e Buy: Deploy an existing implementation on
your own infrastructure. This offers quick
setup but limited customisation. Deploying an
open-source implementation lowers the cost
but comes without commercial support.

® Rent: Use a cloud or SaaS solution, paying
for access and usage. This option provides
flexibility, scalability, and reduced upfront
investment, but may involve vendor lock-in.

For an initial pilot, we suggest using the MIT-
licensed Community Solid Server’, as this shows
the web service’s capabilities without requiring
major effort or investment. For setup instructions,
see the tutorial linked from our website.

More about Solid

History
Solid servers were initially

presented as a way to
manage personal data. Solid
used to be short for Social
Linked Data, for connecting personal data across
the web. However, the Solid protocols have never
been tailored only to personal data. Within Onto-
DESIDE, we found that Solid also lends itself very
well to industry and governmental data, making
it a strong candidate for supporting the kinds
of information exchanges described in the user
stories.

More about Data Spaces

Readers that have heard about Data Spaces
might wonder how Solid and Data Spaces are
connected: the technologies and methods put
forward by Data Spaces organizations such as
IDSA or Prometheus-X mostly focus on domain-
specific governance of data sharing. When going
through their documentation, you will notice a
lot of emphasis is put on how to create contracts
between parties, to make sure data access
rules are well established. Solid focuses on the
technical protocols needed to let data flow easily
between parties, once those data access rules
are in place. As such, Solid and Data Spaces are
complementary, but not yet fully integrated.
Within this training guide, we will not go into
detail how data access contracts are put in place,
but focus more on how we can technically adhere
to these contracts.

31

Step 2, 3 and 4—Examples for different circular strategies

As shown, Step 2 supports with clarifying the technical specifications. Step 3 involves creating a data
inventory by identifying available datasets, their formats, ownership, and access restrictions. It helps
clarify what data exists, what is missing, and what can be collected. Step 4 focuses on enabling data
sharing by setting up decentralized infrastructure that allows secure, controlled exchange of standardized
data across actors, while preserving data ownership and confidentiality. Here, we briefly illustrate—for
each of the circular strategies introduced earlier—how the steps play out to reach the strategic objectives

in each case.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel
waste into feedstock for floor tiles.

Step 2 & 3—Requirements & Data Inventory:
On a digital marketplace, the interior outfitter
struggles to source recycled materials because
the materials processor’s data is inaccurate and
inconsistent. Certificates arrive as PDFs and
spreadsheets with varying terms. The actors first
meet to clarify their needs, writing user stories that
specify which data is needed, in which situation, and
for what purpose.

The materials processor’s data steward then
builds a data inventory, cataloguing existing data,
formats, ownership, gaps, and sensitivity. Most
certificates list recycled content and composition;
few include verified environmental impact scores.
Toxic substance data is highly sensitive and only
shared with trusted partners. A mitigation is to
share thresholds only (as in REACH) and apply
granular access restrictions.

Step 4—Enable Data Sharing: The data steward
and marketplace developer enable data sharing
by adopting a decentralised setup with Solid
pods,based on the Open Circularity Platform
(OCP), giving suppliers control over sensitive data.
Fields needing protection get access rules. The
processor subscribes to a hosted Solid service,
configures access-controlled data fields, and
registers its pod on the marketplace.

(B) Middle-of-life: repair
\ What: Repair of audio system through

access to reliable spare parts & instructions.

Step 2 & 3—Requirements & Data Inventory: To
enable sharing of repair options and instructions,
OEMs and building-owner representatives make
user stories—for example: “As a building owner, |
want replacement-component options for a failed
part, with costs and repair instructions, so | can
decide between repair and full replacement.”
The OEM’s data steward compiles a repair-asset
inventory (manuals, speaker-module BOM, parts
catalog, compatibility matrix, firmware notes,
service logs), noting format, ownership and gaps.
Certificates (safety, EMC, RoHS/REACH, recycled
content) are registered, though few confirm
post-repair performance. Sensitive fields—e.g.,
regulated-substance levels, raw diagnostics and
pricing—are flagged for restricted, purpose-
bound access.

Step 4—Enable Data Sharing: To share compliance
data securely, the OEM chooses a decentralised
setup using Solid pods on the Open Circularity
Platform (OCP), which lets customers and
suppliers retrieve data in a standardised way. The
OEM can control access to each data element,
ensuring only authorized actors view it. As a
large company with many subsidiaries, the OEM
hosts its own Solid server and offers this service
to subsidiaries. They also maintain a registry of
suppliers’ pods to enable federated queries.

(C) End-of-life: reuse
. What: Reuse and resale of a door for use
in other building projects.

Step 2 & 3—Requirements & Data Inventory: The
intermediary (marketplace owner) consults with
other actors, buyers and sellers of reused building
elements, what their data needs are, and they
formulate a set of user stories. The intermediary's
data steward then helps the building owner to
create a data inventory for reuse-relevant data on
doors, including sources such as pre-demolition
audit (measurements, condition grades),
installation history, certification (fire/acoustic),
images, location and planning constraints. For
each dataset, they record format, location, owner,
update cycle, sensitivity and access rules. They
flag sensitive fields (exact addresses, pricing)
for restricted sharing, and log information gaps
(e.g., missing hinge). This inventory clarifies what
information exists, what is missing, and which
additional data can be produced.

Step 4-Enable Data Sharing: The intermediary's
developer sets up a Solid pod per building owner,
as a part of an Open Circularity Platform (OCP)
setup, so owners retain control overtheirdata. The
building owners can then share door passports,
each in their own Solid pod, exposing some data
publicly, and restricting access to commercial and
location data to selected buyers. This enables
secure, scalable data exchange across actors.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Step 2 & 3—Requirements & Data Inventory:
First, the OEM consults owners, collectors and
representatives of the demolition sector to map
data needs for automating the take-back process.
They capture user stories, e.g.: “As a building
owner, | want to know whether the OEM offers
a take-back system, and under what conditions,
so | can choose the right end-of-life option.” The
building owner’s data steward compiles a data
inventory of installed components (materials
per room with m?, tile-type installation dates,
installation specs such as binder/adhesive and
underlay, batch IDs, removal methods). The OEM
likewise inventories take-back data: needs, criteria
and pricing. For each dataset, the inventory
records format, owner, update cycle, provenance
and access rules. Sensitive fields—such as exact
locations and contractor rates—are flagged for
restricted access.

Step 4-Enable Data Sharing: The building owner
decides to publish his data on a Solid pod, using
a hosted service providing access to the Open
Circularity Platform (OCP), rather than transferring
it to a central database of an intermediary. The
OEM sets up their own OCP Solid server to host
their pods, to hold data of various products. This
way they both retain control over their data,
sharing selected data elements with other actors.

Step 5—Ensure semantic interoperability: ontologies

Responsible role: ¢, Developer. Participants:‘ Data Stewards + End Users to co-develop and verify the steps.

Before data can be shared through data
infrastructure, e.g. Solid, it often needs
preparation. To achieve true interoperability,
data must not only be technically accessible
but also semantically consistent. This means
describing it with recognised standards and
ontologies. We recommend relying on de facto
standards within your field, complemented with
the Circular Economy Ontology Network ()
developed in this project, to ensure cross-
domain alignment.

The role of interoperability

Interoperability can exist at different levels, and
basically means that entities can work together.
In a technical ecosystem, interoperability usually
means that a set of systems can operate together
without requiring extensive human effort in the
day-to-day processing and exchange of data.
Achieving this requires looking at both technical
and semantic interoperability.

e Technical interoperability ensures that the
form (the syntax) of data can be exchanged.
For example, agreeing on what file formats a
system should import or export, or aligning on
the API structure for web-based systems.

e Semantic interoperability goes further by
ensuring that the meaning of the exchanged
data is shared and understood. Even if two
systems agree on a common format—e.g., CSV
files or an APl with certain parameters—there
remains the question of what the data values
actually represent. Semantic interoperability
means knowing that we use the same
meaning for the concepts exchanged, and
recognising when data is incompatible.

In general, technical interoperability can be solved
by building file format converters and publishing
APl specifications. Semantic interoperability

requires in-depth investigations into not only the
data itself but also the processes of using and
producing the data. Digital technologies can help
to support this process, e.g., by allowing us to
describe and capture the meaning of our datain a
precise and formal way—understandable by both
humans and machines. This is where standards
and ontologies become essential.

Achieving semantic interoperability

To move from ad-hoc interpretation to shared
meaning, data should be described using
recognised standards and ontologies. We
recommend relying on de facto standards within
your field, and complementing them with the
Circular Economy Ontology Network (),
developed in this project, to support cross-
domain alignment. provides a common
vocabulary that bridges differences between
domains, making collaboration smoother and
more reliable.

Ontologies
Anontology is a formal model describing a domain

of interest. It offers a way of capturing meaning,
i.e. defining concepts and relations in the domain
that can be used to describe our data, so that we
precisely know the semantics of it. Commonly
such ontologies are called “domain ontologies”,
to separate them from models trying to capture
the nature of the whole world, or application
ontologies that may be specific to one particular
system or type of application.

In order to create and share an ontology, and to
make it formal and precise so thatitcan notonly be
understood by human users, but also by systems,
we need a formal language in which to express
the ontology. The most common language used
today is a web standard, OWL?, developed for
expressing and sharing ontologies over the web.

The language is based on other common web
standards, e.g. using URIs to identify things so
that we can point to concepts and relations in the
ontology from anywhere onthe web. The ontology
is stored in a file that should be accessible over
the web, so that the URIs identifying its concepts
and relations actually resolve. To allow for
describing a domain in detail, the language allows
to express axioms that can be used for automated
reasoning. While reasoning is a powerful feature, it
also adds complexity. OWL provides the possibility
to derive new fact and check consistency, but it is
not a constraint language. For validating data, and
verifying constraints, other languages exist, such as

SHACL°—but this will not be covered in this guide.

To identify and link to ontologies OWL makes use
of the namespace notion, which allows us to give
an identifier to the ontology as a whole, and then
extend that namespace to identify its elements.
Normally the URI of the ontologyis alsoits URL, i.e.
the location where it can be found, as well as the
namespace for its content. A URL can represent
a public address on the web, or for instance, a
location on an intranet. However, to facilitate a
shared model for interoperability between actors,
ontologies need to be accessible by the actors that
use the data described by the ontology.

When looking at
the'world ..

. differentythings may
be important to us

| see... ®_ A | see...
O] A

ZAN o

But anything can be defined differently:
material properties, certification,
component & product status,
warranty, repair & refurb history,

Figure: Why are ontologies important?

%

35

36

An example of an ontology

To understand and manage the ontologies you
need in your value chain, it might be useful
to first get a better understanding of what
concretely can be expressed using ontologies. In
this section we consider a simple example of an
ontology consisting of just a few concepts and
relations between them, to exemplify some of the
constructs in the OWL language. The illustrations
here are shown in a notation called Grafoo,
though ontologies can also be visualised in other
notations. However, an ontology is fundamentally
a set of machine readable logical axioms, not
merely a graph or diagram. The axioms are
stored in an ontology file, using a syntax such as
Turtle (see more details in Step 6) to make them
understandable and usable by applications.

Concepts
The core element of an ontology is the concept.

In OWL concepts are called classes, but since
this is easily confused with the class notion in
programming, we mainly use the term concept.
A concept can be viewed as representing a set
of things, its instances. So one way to view the
concept “Building” is that it represents the set
of all buildings. Another point of view is that it
represents a type, i.e. it is a category that can be
used to classify instances. The example below
shows the concept “Building” and an instance
of building, i.e. a specific concrete building,
which we for the sake of the example have called
“building A”. The relation rdf:type is a built-in
relation, coming from the RDF language!® (as
indicated by the prefix “rdf:”), that is used to
connect instances, i.e. data nodes to concepts.

O)—drtpe Building

building A

Relations between concepts

In an ontology we also want to express what
possible relations may hold between instances
of concepts. These are called object properties
in OWL. The example below shows two concepts,
“Building” and “Room”, and a relation “hasSpace”
that can connect instances of these concepts. In
OWL, properties are first class citizens that can
exist independent of any concept, but commonly
we express their intended usage through some
axioms in the ontology. This could be a restriction
on the concept, or domain and range restrictions
on the object property, which (in Grafoo) is
illustrated by connecting the boxes.

BUIldIng """ hassﬁce ------- Room

Lexical representations

Ontologies also help us to separate the lexical form
of a concept, i.e. the different terms that can be
used to refer to a concept orits instances, and the
concept itself. Each box and arrow in our figures
will have a unique identifier in the ontology file,
independent of what label we give it. Thus this
separates a concept definition from its naming,
allowing us to, for instance, express synonyms,
and to represent how different languages name
the same concept. It can also be used to express
different naming schemes, e.g. how different
standards name the same concept differently.
Below you see, the “Room” concept translated
into English, French, Swedish and German:

)"mljm“':;;ﬁ o

dfs:labsl
dfs:labsl—>" rum" & s
Room dfs:labsl
P aimmor B

dfs:labsl
\"Ehﬁmhfﬂ'@ﬁ

Attributes

Another type of relation is attributes. An attribute
connects instances of a concept to literals, i.e..
data values. The actual data values are not part of
the ontology, but in the ontology we express what
attribute relations (called datatype properties in
OWL) exist and the datatypes the data values
have. Below we illustrate two datatype properties
of a “Building”, one that can hold string literals
representing a building identifier, and one
representing the number of floors as an integer.

suildingiD

Building ..

Axioms and reasoning

So far we have only seen the features of OWL
that allows us to “name things”, i.e. to create a
vocabulary for types of things and relations in our
datasets. However, ontologies can be more than
vocabularies. OWL is a logical language, which
means that it allows axioms to derive new facts
from existing data — a powerful feature, but also
complex. For instance, we might want to classify
elements in a building as potentially “recyclable”
if they meet certain well-defined criteria. In the
naive example below we classify doors as being
wooden if they are composed of some wood
material, which illustrates such capabilities.

- : Door and (hasComposition
“'EJJ"‘“":M”““_»E' some (compositionOf Wood) :

Namespaces and links between ontologies
Agreeing on one single naming scheme, or one
single ontology, makes things easier for data
exchange within a domain. However, when
considering cross-domain scenarios this may
simply not be feasible. Each industry doman has
its own formats and standards, and in some cases
already their own ontologies. So instead ontologies
can support mapping between standards and
ontologies, because ontology languages, such as
OWL, are built for the web. So just as we can create
links between web pages, we can also create links
between ontologies, and even between single
elements and definitions inside the ontologies.

Since all ontologies have unique identifiers,
which can be resolved on the web, we can point
to any ontology on the web from our data.
This means that for instance, the “building A”
in our first example on this page, may reside
in a dataset on our company server, while the
ontology containing the “Building” concept may
be published in an entirely different location on
the web. To make this work, we need to provide
the “address” of each element we introduce,
normally a URI. To make things more readable
in a file, or an illustration like in this guide, we
can shorten the URI to what is called a prefix - a
short name for the longer address. In the example
below you see two concepts representing a room,
from two different ontologies - the “ex:” and the
“wd:” are prefixes, which in the ontology file then
has to be connected to the correct URIs.

tlnlorgy 1 - Fa. Cwlelorgy 2 Wikiedalz

rm1 rxLivitlenl G wd:Q180516

37

Different uses of an ontology

An ontology is in itself merely a model of some
domain, i.e. making it explicit how that domain
views the world, how it defines different concepts,
and how the concepts are related. This means
that an ontology is NOT in itself a data format,
it is NOT even a schema for creating data in any
format. As such, an ontology does not prescribe
any format or any structure of the data. It can
simply be used as a terminology (or mapping
between different terminologies), providing
a description of the domain. Since ontology
elements are uniquely identified by URIs in OWL,
this means that descriptions do not have to reside
in the same place as the data, but data can link to
ontologies published elsewhere.

Using an ontology as a vocabulary

An example of this usage could be to apply an
ontology to define the keys (names of attributes)
in a JSON structure, using the JSON-LD syntax.
In this example, see image below, the @context
key identifies that it is the GS1 Web Vocabulary
(an ontology, available under URI https://ref.
gsl.org/voc/) that contains the definitions of
the attributes “globalLocationNumber” and
“organizationName” that are used to describe the
entity identified by the @id URI, which this JSON
document is about.

https://ref.gsl.org/voc/
http: f/examp Le. org/ my
TISQR3ATI1R7S

Ragn-Sells AB

Figure: A JSON example.

Using an ontology for data access

Another use of an ontology is to express queries
over data. As you will read about in step 8 of this
guide, expressing queries over data needs to be
done using some vocabulary, i.e. we need to know
what we can ask for. In this guide we assume that
all datasets are actually transformed into RDF
(as discussed in step 7), but even if this was not
the case we could express queries based on the
ontology and then create a mapping to the data
sources using their own specific schemas.

Using an ontology as a data schema

An ontology can also be used as a schema for
expressing data, i.e. as the structure of a graph
dataset. If we would like to create an integrated
knowledge graph, for instance, containing data
from different data sources. Then the ontology
could be used as the schema of that knowledge
graph. But it is important to keep in mind that this
is just one possible use of the ontology, and which
use is right for you depends on the decisions
made in the other steps of this guide.

Example data, illustrated as a graph (knowledge
graph) with individuals as dots, representing
instances of the building and room concepts
illustrated earlier, and values for the two datatype
properties in the previous example can be seen
below:

Building RO]
R S EIT I Beb TR BEH LT relivpe relivpe
&
buikl gl
4] m}(/‘mra aasEs
o building A 3 345

Figure: A data schema example.

Why does CE need ontologies?

CE inherently means collaboration, and
collaboration means the need to understand
each other. CE also implies complexity—complex
systems that need to scale across organisations,
material flows, and time. Most of our current IT
systems have not been built for such scenarios,
but targets the internal processes of the
organisation. Many also have implicit information
models and system-specific data formats that are
hard to explain and share with others. To some
extent standardisation has aimed to alleviate this
problem, but usually on a per-industry domain
basis, whereas CE goes across domains. In such
a scenario it is important to make definitions
and assumptions explicit, and to be able to
map between a plethora of different standards,
formats, and models, and make domain
assumptions explicit to others—also to other
technical systems. This is where ontologies play
a crucial role!

A shared
ontology
That allows for Which enables the

transforming data

exchange of data

Next steps in ontology support

With semantic interoperability understood, the
task is to assess needs and determine ontology
support in your case.

e Ontology requirements and inventory (5a):
Identify technical requirements and review
existing ontologies, including from
Onto-DESIDE. Carefully assess their coverage
and fit for purpose.

e Ontology extension (5b): If or other
ontologies do not cover all requirements,
extend them to meet specific needs.

e Ontology alignment (5c): Where multiple
ontologies are in use, connect and align them
to ensure consistency and interoperability.

Outcome: Step 5 delivers an ontology requirements
specification, together with a network of extended
and aligned ontologies, designed to support your
value chain’s data sharing infrastructure effectively.

Figure: How ontologies work—they provide a shared language for organising data.

39

40

Step 5a—Ontology Requirements and Inventory

Responsible role: ¢, Developer. Participants:‘ Data Stewards + End Users to co-develop and verify requirements, and verify the steps taken by the developer.

It is time to figure out what ontology (or
ontologies) we need in the setup of our
particular value chain collaboration. Based on
the output of steps 1-3, i.e. an understanding of
the value chain, its actors, needs, and the data
required to make the intended flows happen,
as well as the inventory of what data exists and
where, it is now time to see how all this maps
to an ontology. To have more detailed guidance
in the following steps, you may want to look
further into a specific ontology engineering
methodology, such as LOT!, and also think
about how these steps will interface with your
existing information management and systems
development practices.

Ontology requirements

In step 2 we determined the overall system
requirements of the data sharing infrastructure of
the value chain, and in this step we figure out what
this means in terms of ontology requirements.
Ontology requirements are often expressed as
Competency Questions. Competency Questions
(CQs) are questions that should be possible to
answer using the ontology, or data described
using that ontology, and should be based on
the information needs of the actors in the user
stories. You could view it as listing what questions
different users and actors in the value chain
would be asking the overall distributed data of
the value chain in specific situations. It is usually
a good idea to express CQs in generic manner, i.e.
without mentioning explicit data examples, but
rather types or categories of data. For instance,
while “What is the percentage of ALU content
of this window construction?” would be a valid
CQ, a better one, making the scope and level of
detail of the intended ontology more clear, would
be “What is the weight percentage of a specific
substance in a certain building element?” for an

ontology targeted at the construction sector, or
even “What is the fraction of a specific substance
in a specific physical object?” for a more generic
ontology about materials. If expressing questions
feels awkward, the requirements can also be
expressed as simple sentences, specifying what the
ontology needs to cover, such as “Physical objects
and their material content, expressed using different
metrics with associated units of measure.”

In addition, CQs may represent reasoning
requirements, i.e. things that should be derivable
based on the ontology or its associated data,
rather than merely “retrieval questions”. For
instance, a CQ like “What is the best end of life
scenario for a certain used product?” will probably
not imply a “lookup” of this in a database, but
rather deriving different suggestions for end-of-
life scenarios based on a set of parameters of the
product in question. Such CQs may spark valuable
discussions on the scope and task of the ontology.
To what extent should this be derivable through
“rules” expressed using the ontology, and to what
extent should this be a manual task, or a task of
an associated recommender system perhaps?
Thus in some cases you will encounter needs that
first seem to be ontology requirements, but in the
end may result in other kinds of requirements,
that may not be solvable by the ontology itself
but rather requires a certain software solution
or application to be built on top of the data.
Adding lots of axioms in your ontology will make
it complex, both for humans and machines. So be
aware that this should be clarified before starting
to build extensions to the ontologies, to avoid
having overly complicated models that in the end
still may not solve the need you actually had—
ontologies do not do magic, they are merely
models of the domain, and documentation for
your data!

Needs and

Ontology reg’s
specification

existing data

- Ontology { — ‘ Use
requirements as basis to map
analysis ‘ requirements

Remaining
requirements

1 Assessing need Deciding on
for other ontology integration
‘ ontologies & extension

Figure: Analysing ontology requirements
and inventory—process overview.

Requirements can also be based on data that is
already available, and processes that are already
in place, e.g. as discovered in the data inventory
step. Studying such existing data may yield
additional CQs representing typical queries that
are already today used to retrieve the data. Or
you may simply use sentences to list the “entities”
that exist in those datasets, and their associated
attributes. But also make sure to capture any
hidden assumptions, e.g. units of measure that
are not explicit, or whether there is a need to also
capture the provenance of the data, apply change
tracking or not, etc.

The output of the ontology requirements
engineering process should be an ontology
requirements specification document. Take care
to give CQs identifiers so that it is easier to refer
to them, and to indicate when they potentially
change. CQs should also be verified with the
actors identified as holding those needs, and may
have to be prioritised if there is a long list of them.

Understanding CEON

Once requirements are in place, the next step is to
identify to what extent these are already solved in
existing ontologies. In the Onto-DESIDE project

Requirements
specification &

mﬁ% implementation
plan

Web ontologies

we have developed an ontology network specific
to CE needs, called . It is modular, to allow
reuse and extension of the single modules, and to
make it more flexible to varying needs.

To map the CQs to the ontology network,
the ontologies can be loaded into a tool for
visualisation and editing (such as Protégé), or
the online documentation can be used. Entering
the URI of the ontology module in a browser
window will normally take you directly to the
documentation page, where you can see a
visualisation of the ontology, as well as lists of
all its classes (concepts), properties (relations)
and their natural language representations
(labels) and definitions (comments). For each CQ
you can search for the specific terms included
in the CQ to check whether they are actually
present in the documentation, and may map to
classes or properties. However, in most cases
the terminology of your specific requirements
may be too specific compared to the one used
in the ontology modules, hence, you will need
to either search for broader terms, or make a
manual assessment by reading through the lists
of concepts and relations and their definitions.

In some cases, the ontology may need to be

41

studied more in detail to make sure that a CQ
is fulfilled, e.g. checking whether there are also
sufficient properties connecting the concepts
found, and that their definition (also in terms of
domain and range) match the usage you have
in mind. This can be done through the ontology
visualisation, or by opening the actual ontology
file in a tool of your choice.

For example, consider the case where you are
the manufacturer of a floor tile systems, and
your CQ reads “What is the material composition
of a specific floor tile?”. “Material composition”
can be found in the ontology documentation of
the materials module of , while there is no
concept representing “floor tiles” in any module.
Instead, there is a general concept representing
“products”, where in this case the “floor tile” is
your specialisation of this concept. Additionally,
you check the ontology visualisation to make
sure there is a connection between products, and
materials. Hence, the conclusion would be that
parts of the CQ is directly modelled through the
materials module, while another part requires
a specialisation of the products module, but it
is possible to express their connection through
existing classes and properties.

After completing this, you will have an
assessment for each CQ, stating whether they
are (a) directly modeled by already, (b)
need a specialisation or extension of to
be satisfactorily modelled, or (c) seems to be
completely out of scope of , orare modelled
or defined in an incompatible way in

Other ontologies?

In some cases you may already be using other
ontologies, or there are other ontologies already
built for a specific concept that goes beyond

.In this case, it is good to first check whether

also already provides an alignment to such
ontologies. In many cases, this may actually have
been considered already. For instance,
contains references to GS1 Web Vocabulary, as
well as the EMMO upper ontology for materials
modelling. To allow flexibility these links are
mainly included as “see also” references in the
ontology modules, rather than explicit relations,
while also a number of alignment modules are
available. When checking if already aligns
with your ontology of choice, check for “see
also” annotations, and review the alignment files
available in GitHub.

Decision point - Is the ontology sufficient?

After this step, you should now make a decision
how to proceed, depending on your assessment
of on one hand the coverage of and related
ontologies over your CQs, and on the other hand
if there are additional ontologies you need to
align to.

If all your CQs are sufficiently covered by ,
or and ontologies where alignments are
already provided, then you can proceed to step
6. If there are parts of your CQs that are not
sufficiently covered, and you think extensions to

, such as adding more specific concepts, or
extending the scope, are needed, then you should
consider step 5 b — ontology extension. If you also
would like to connect additional ontologies to

, Or your extensions, that are at the moment
not aligned with , then consider also Step
5c¢ — ontology alignment.

Does this Can we also

"
work...? Qj] include...?

Figure: A developer discussing with an end user to verify the requirements.

43

44

Step 5b—Ontology Extension

Responsible role: ¢, Developer. Participants:‘ Data Stewards + End Users to verify steps taken by developer.

Given that the assessment of and other
existing ontologies resulted in the conclusion
that some extensions are needed, a structured
approach to such extensions is necessary. In this
guide we only briefly describe the steps needed
to create an extension of a module. If a
completely new ontology has to be created,
from scratch, we recommend to study ontology
engineering methodologies more in detail,
and set up a suitable plan for performing the
ontology development project based on that.

Why specialising an ontology?

Our focus here is on ontology extension, i.e.
specialising and potentially slightly extending a
specific module, based on requirements
identified in the previous steps. Specialisation
means to add more specific concepts and
relations that better describe our data, i.e. adding
domain-specific modules as illustrated in the
figure to the right, rather than the generic cross-
domain concepts in the core modules. The
motivation for adding such concepts and relations
can be both purely technical, i.e. the need to
further specify the concepts so that certain
consistency checking or inferences can be made,
or also a matter of communication.

Consider concepts such as "product" and
“component”, which can include multiple kinds
of things depending on the industry domain, and
also the perspective of the organisation where
the data originates. In the case of our running
examples (A-D), we would rather like to have a
more detailed taxonomy of products, such as
“building element”, “door” and “floor system”, as
well as more detailed component concepts, such as
“floor panel” and “floor pedestal” as components
of a floor system. The key idea of specialisation
is that the new concepts and relations are added

Product module

Specialise/ \ Specialises

Electronics Electronics
Products Products

mainly as subconcepts or sub-relations of already
existing concepts and relations. While a general
extension may also add concepts and relations
completely independent of existing concepts and
relations in the extended modules.

The benefits of an extension, ratherthan modelling
something from scratch, is that the taxonomy can
be used to reason over and query data regardless
of at what level in the taxonomy it is described.
Consider a dataset that is described using the
core module, describing a certain object
as an item of a certain product type (see top of
the figure to the right). Another dataset may use
a more specific ontology that describes another
object as a tile of a certain floor system product
(middle part of the figure). When querying over
both these datasets, asking for all tiles will only
return the data tagged with the more detailed
concept, i.e. only the result from dataset 2, while
asking for all items will return both the items
described using the generic concept, but also
everything tagged with the subconcepts, such
as “tile” (bottom of the figure). Hence, we use
the semantics of the subclass relation between
concepts, to allow us to seamlessly integrate
data that is described with ontologies at different
levels of detail and granularity — as long as they
both rely on the same core concepts.

Other benefits include the possibility to include
more specific relations or restrictions that apply
only to the subconcepts. For instance, some
characteristics, such as length, width, height,
and material composition, may be relevant for

ontkogy 1

datased 1

Tile_id1234

onbokxy 1

rdfs:subPropartyCf rdfs:lsuhﬂlassﬂf

rdfs:subClassCf

anbology 2
[specialisation

datased 2

Tile_id5678

Cuery: Astriges all tiles
Rasult: Tile id5E78

tamCF Syste

almost all items, while other aspects, such as the
maximum point load a tile can withstand makes
much more sense to model at the tile level (or a
potential intermediate level of built elements).

Product

FloorTile_type_y

Product

Floor System Product

FloorTile_type_z

Cuery: Redrigea all itams
Rasult: Tile id53E7E, Tile id1 234

Figure: An example of extending an ontology with domain specific concepts.

45

46

Specialisation
In order to create appropriate specialisations,

consider the ontological requirements (e.g. CQs)
that were identified as not immediately covered
by or other existing ontologies. If the
matching process in step 5a, understanding ,
resulted in a number of identified connections to
CEON, these can now be used to add subconcepts
representing the missing specific concepts.

Start by creating a new ontology file, i.e. do not
modify the files directly, but create your
own ontology file with a new identifier and then
import the module you want to specialise.
The new file should have its own identifier, using
a URI that can be resolved (whether externally
or on your intranet) when you publish the
ontology. Then add the specialisations in this file.
Commonly a modelling tool, such as Protégé,
would be used to allow for graphical modelling.
In Protégé, imports can be added using the user
interface, and then subclasses, subproperties,
and additional axioms can be added, before the
file is saved and published.

Where to actually “attach” your extension is not
always straightforward. As mentioned above,
you should have identified some connections
between your requirements and , or any
other ontology you are extending. However,
even if you have identified two concepts that you
will specialise by creating subclasses of them,
understanding how they are to be “connected” is
not always obvious. In this context, it is important
to remember the fact that OWL treats relations
as first class citizens, i.e. properties exist in their
own right, and not only as something “attached”
to a concept. This is a great flexibility, but also a
usability challenge as it may be hard to understand
the intended usage of a relation, and thus also

how to specialise it. Usually, some axioms are
added to the ontology to prevent misuse of the
relations, and to show the intended usage. This
can be through domain and range restrictions
on the relations themselves, or by setting a
restriction on the class. Logically these have very
different meanings (semantics), but unless you
are going to use a reasoning engine (see more on
this below) you can view this as cues about the
intended use.

Another issue that may arise is that you seemingly
cannot find any direct relation between the
concepts you are adding subconcepts to. In some
cases, this may of course be because they are
not actually connected in the model. But in many
cases this may simply be because the connection
is not direct. In OWL only binary relations exist,
which creates a challenge when we need to
connect multiple pieces of information that
depend on each other. This could be for instance
when we want to express material content of
an item, and need to specify both the matter
involved, the amount of it, and a unit of measure.
For example, saying that “my tile contains 70%
calcium sulfate” means connecting a specific tile
(“my tile”), a material (calcium sulfate), a number
(70), and a unit of measure (%). This cannot be
expressed through a direct relation. Instead we
have to use a technique known as reification,
i.e. we treat the relation itself as a “thing”. This
can be done by adding a class to the ontology
representing the relation, e.g. in this case a
MatterComposition class, that then relates to the
item, the matter, the value and the unit. is
actually full of these reifications, in order to allow
for very flexible modelling, and also to enable to
track metadata on these kinds of statements.

Design choices and tradeoffs

To make your additions reusable and maintainable
also keep in mind that modularisation is beneficial.
Hence, adding too many new concepts and
relations into the same extension module may
not be the best choice. Consider to divide the
extensions into subsets, either by criteria that
make sense to users, such as extensions that will
be used for certain queries or certain applications,
or layer the extensions so that their granularity fits
certain datasets to be described by the ontologies.

Other things to keep in mind is the tradeoff
between being very detailed versus sticking with
less detail but instead being more reusable. Look
at the technical requirements defined in step 2
and think about how your module might need
to generalise in the future, or whether it can be
designed in a way that can cover more than one
requirement (e.g. a broader set of CQs and/or
more of the user stories) at once. There is no right
or wrong here, but this needs to be a decision
made by the developers, in close collaboration
with data stewards and end users, who may be
the ones knowing what to expect in the future in
terms of changes to the data or new uses planned.

Another design choice involves what level of
axiomatisation to add to the ontology. We
actually already saw an example of inferences on
the previous page, where we used the semantics
of the rdfs:subClassOf axioms to infer that the
instance of a subclass is also an instance of the
superclass, i.e. the tile is both a tile and an item
in the case of the extended ontology. OWL also
allows for much more complex axioms than this.
What is important to remember is that reasoning
is a powerful tool, and can be very valuable to
both check the consistency of the domain model,
as well as infer new information. However, these

complex axioms also add complexity to the model.
Both complexity in terms of understanding the
model, so it becomes harder to use, extend and
modify in the future—it is easy to accidentally
introduce conflicts and unintended consequences
in an ontology with many complex axioms. But
also complexity in terms of the computations that
are done using the ontology.

For reasoning there are OWL inference engines
already available, as general purpose software
that allow you to derive the conclusions that you
can draw based on the model and associated
data. However, these reasoning engines will be
slower the more complex the model is, and in
some cases there may not even be guarantees on
their termination. The same goes for queries that
use inferencing as a pre-processing step, such as
was the case of the tile example, where we first
have to derive the full set of types (concepts) the
tile belongs to, before the actual retrieval takes
place. This is powerful, but time consuming. So
carefully assess the need for such reasoning to
take place, before adding too many axioms to
your ontology extension.

Documentation and publishing

Once you finish your extension, make sure to
properly document all the new elements by
using rdfs:label for human readable labels, and
rdfs:comment for human readable definitions
and explanations of the concepts and relations
added. Also document the ontology itself, by
adding metadata to it, such as a version number
(for keeping track of new versions when changes
are made), author, and publisher etc. If the
ontology is to be made publicly available, also
include licensing information, for enabling its
reuse by others.

47

48

Testing

As hinted previously, sometimes the models
become large and complex, even when split up
into a set of modules. So another piece of advice
is not to underestimate the need for testing
of your ontology. Most ontology engineering
methodologies include some evaluation or testing
step, but they are sometimes not explained in
detail. A minimal set of testing methods may
include at least:

e Verifying the syntax by loading the ontology
into a tool, and checking consistency of the
model using an OWL reasoning engine.

e Checking for structural errors using a validator
tool, such as the OOPS! and FOOPS! services.

e Testing your requirements fulfilment by
expressing test data according to the ontology
structure, and expressing some CQs (or
existing queries) as queries over the test data,
to verify that expected results are returned.

e Verifying that expected inferences are made
over the test data using a reasoning engine,
and provoking errors by adding erroneous
data that should not cause issues when
encountered by the reasoning engine.

Ontology Engineering Methodology

Several well established ontology engineering
ethodologies exist, and a useful summary and
overview of typical steps and activities can be
found in the description of the Linked Open Terms
approach'?. However, other types of approaches
and methodologies also exist, such as the eXtreme
Design (XD)*3, which is more suitable for modular
ontology development and rapid prototyping of
ontologies. More concrete, detailed advice on
actual modelling can also be found in the tutorial
from Stanford University4.

49

50

Step 5¢c—Ontology alignment

Responsible role: ¢, Developer. Participants:‘ Data Stewards + End Users to verify the alignments.

In some cases, you may want to reuse concepts or
relationships from other domain ontologies that
are not yet represented in or that are more
detailed than . Ontology alignment, also
called ontology matching, is thus a key technique
for enabling semantic interoperability’®.

Why ontology alighment?
In some cases, the ontologies you are working
with does not cover all your needs. For example,
you might need more detailed categories of
engineering materials in your application, but
does not currently model them. If you
identify another ontology that provides such
detailed categories, you will need ontology
alignment to integrate it with . Ontology
alignment establishes mappings between
common concepts and relationships across
different ontologies. These mappings can capture
equivalence (e.g. two concepts representing the
same meaning), hierarchical relationships (e.g.

DPPO:DPPInformation

isApout

DPPO:Product

containsinformation desclibes

DPPO:DPP

map.ppng -

one concept being more specific, a subclass, of
another), or even more complex relations than
that. For instance, both and the Digital
Product Passport Ontology (DPPO) have Product
concept definitions. If we establish an equivalence
mapping or sub-relation mapping (:Product is
a DPPO:Product), we make it possible to utilize more
semantics in DPPO, as graphically illustrated below.

What is ontology alignment?

Ontology alignment takes two ontologies as input
and produces an alignment as output, that is, a
set of mappings between entities from the input
ontologies. These entities may include classes,
object properties, data properties, or individuals.

In our project, we established a pipeline for
generating alignments between and other
relevant ontologies. As illustrated in the figure
to the right, once you have relevant ontologies,
you can start with using one or more ontology

CEON:Resource

rdfs:subClassOf

CEON:Product

rdfs:subClassOf

Construction:FloorTile

Figure: An example of ontology alignment.

Find relevant Merge alignment
ontologies : and ontology
- Run matching ‘ ‘ Filtering ‘ ‘ Human |
o | toolsand.. | ‘ | ‘ validation |
Share alignment
ontology

Figure: A process overview for ontology alignment.

matching tools to generate candidate mappings.
These candidates then undergo an optional
filtering step and a validation step to produce
the final alignment. Filtering might mean that
mappings generated by fewer than half tools are
excluded to improve precision, if you use several
ontology matching tools to produce candidate
mappings. Then validation is a manual step,
where a domain expert should check the output
of the matching system, to make sure that no
errors are introduced (since no such system is
100% accurate).

In our project, we have already provided sets of
mappings between and several relevant
domain ontologies in the fields of materials,
manufacturing, and products. If these ontologies are of
interest, you can directly reuse the existing mappings.

Alternatively, if you are working with your own
ontology or have identified another ontology that
you wish to integrate with , you can follow
the alignment pipeline to generate new mappings.
This process enables the creation of an ontology
network that includes , your ontology, and
the “connections” (mappings) between them.
In this case, the first step is to select a relevant
ontology matching tool and use it to generate
candidate mappings.

How to find other related ontologies?
There are several public repositories where you

can search for relevant ontologies. Examples
include DBpedia Archivo'®, BioPortal'’, Linked
Open Vocabularies®* (LOV), and the GitHub
repository maintained by our project’®. These
repositories allow you to search for ontologies by
concept or relationship names and to download
them in various formats. Such repositories provide
an important starting point for identifying ontologies
that can be aligned with , or any other ontology.

Ontology matching tools and what they do

A variety of ontology matching tools are available
to generate candidate mappings. For example,
LogMap® is a well-known tool designed for
scalability, i.e. working with large scale ontologies.
It applies both lexical and structural matching
strategies and includes unsatisfiability detection
to ensure that the resulting ontology network
(ontologies plus alignments) does not contain
inconsistent concepts. This feature is crucial, as
it helps to verify whether the integrated network
is logically consistent. Another widely used tool is
MATCHA?!, which also employs matching strategies
based on lexical and structural information
contained in the ontologies. You can of course also
select another matching tool of your choice, and
apply it using the same principles. However, take
care to ensure you can use the output of the tool
for further validation, and be aware that different
tools have different benefits and drawbacks and
no tool is perfect—see them as an assistant, but
not as providing the actual truth.

51

52

Validating and merging

Once you run an ontology matching tool, it
is necessary to involve human validation to
check the alignment output. Then, depending
on the application, you may either require
ontology alignments to demonstrate semantic
interoperability between two ontologies, or
you may need to integrate the alignments with
the ontologies themselves—for example, when
creating semantic mappings to transform data into
RDF. In the latter case, a merging tool is required.

There are many ways of merging. Two common
approaches to ontology merging (where an
alignment can also be considered an ontology) are
the following: (i) use Protégé*, which provides a
merging function accessible directly through its
user interface; (ii) use ROBOT?, a widely adopted
tool in the Open Biomedical Ontologies (OBO)
Foundry. ROBOT can be used as a command-line
tool or as a library for any language running on the
Java Virtual Machine. The result of this step (in case
you decide to perform the merging) is an integrated
ontology thatincludes the input ontologies, together
with the alignment.

Sharing ontology alignments

Whether you decide to merge your ontologies or
not, you may also want to publish the alignment you
arrived at, for others to benefit from. For instance,
this could be so that your business partners can also
use the same alignments, and thus the same set of
interconnected ontologies as you do.

Most ontology matching tools follow a common
practice of representing mappings in the RDF
format. A mapping is typically expressed as a
four-element tuple consisting of two entities, the
relationship between them, and a confidence
score indicating the strength of that relationship.
In our project, we further explored the use of
the Simple Standard for Sharing Ontological
Mappings (SSSOM)?**, which extends this practice
by supporting richer metadata for describing
entity mappings. To facilitate this, we provide
a program that converts mappings from RDF
format into an SSSOM-compliant CSV format. The
figure below shows how to represent a mapping
with basic metadata supported in the RDF format
and additional metadata supported by SSSOM. The
following figure shows the previous mapping example
in the tabular format, where the metadata contains
basic RDF format-based metadata and additional
metadata supported by SSSOM.

We suggest that you share your mappings
together with any ontologies you have created, or
want to make available, and publish them with a
dereferenceable URI at your website.

A detailed tutorial on using an ontology matching
tool (e.g., LogMap) to generate candidate
mappings, with an optional step for converting
them into the SSSOM format, is linked from our
website.

Additional SSSOM format-based metadata

jstification toal Flervigwer

CEOMNProdust DPPOPreduct 1.0 Equivalencs Mapping LexgcalMatching | Loghap FReviewer

Figure: An example of an ontology alignment expressed in RDFs and SSSOM.

53

Step 5—Examples for different circular strategies

Continuing our circular strategy examples, we look at how Step 5 plays out. Step 5a identifies what
concepts are needed to describe data, expressed as Competency Questions. Step 5b extends existing
ontologies like CEON if gaps are found, adding specific classes or properties. Step 5c aligns multiple
ontologies to ensure semantic consistency across systems, enabling interoperable data sharing and
federated querying in circular value chains. They feature as needed for each example.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel
waste into feedstock for floor tiles.

Step 5a—Ontology Requirements & Inventory: To
improve the marketplace’s data infrastructure, the
data steward and developer define Competency
Questions (CQs): ‘What is the recycled content?’
and ‘Are toxic substances below legal limits?’
The CQs are mapped to Onto-DESIDE’s CEON
ontology. CEON covers broad concepts (e.g.,
‘Material,” ‘Composition’) but lacks terms for
recycled footwear components and batch-level
certification metadata. The developer records
which CQs are supported and which require
extensions, laying the groundwork to refine the
ontology around real data needs.

Step 5b—Ontology Extension: To describe
recycled shoe rubber accurately, the developer
reused CEON and extends it by adding a subclass
RecycledFootwearRubber under Material, and
a property hasBatchCertificate to link materials
to compliance data. The extension is then
verified with the data stewards and end user
representatives. This allows detailed descriptions
of batches, such as “contains 22% recycled rubber,
certified below legal thresholds for phthalates.”
These extensions ensure semantic clarity and
support traceability across systems, enabling
consistent data interpretation and reuse.

(B) Middle-of-life: repair
\ What: Repair of audio system through

access to reliable spare parts & instructions.

Step 5a—Ontology Requirements & Inventory:
The building owner must verify the repaired
speaker’s compliance and recycled content.
The OEM’s data steward frames competency
questions (CQs)—e.g., “What are this device’s
components?”, “How much recycled content
does it contain?”, “Does it meet toxic-substance
thresholds?”—and maps them to CEON. CEON
covers general notions (Product, Product
Component, Material Composition) but lacks
electronics-specific and repair-history concepts.
The steward records which CQs are supported
and which require extensions.

Step 5b—Ontology Alignment: To cover smart
electronics devices, the developer decidestoreuse
the SAREF ontologies (The Smart Applications
REFerence Ontology) and additionally some
compliance data that uses external certification
vocabularies (ontologies). The developer creates
mappings between CEON and these ontologies
to ensure semantic interoperability. For example,
saref:Device can be aligned with CEON’s Product
concept, and hasMatter is aligned with equivalent
relations in certification schemas. This allows
data from different systems to be interpreted
consistently, enabling secure and verifiable sharing
of repair-related environmental data across actors
without requiring changes to internal systems.

(C) End-of-life: reuse
. What: Reuse and resale of a door for use
in other building projects.
Step 5a—Ontology Requirements & Inventory:
Before putting such data online in the Solid pods
it needs to be described by a shared model. Thus
the actors jointly define CQs to represent common
concepts in the data and data needs of the actors:
“Does this door fit opening X within ty mm?” “Is
the fire rating valid for intended use?” “What is
handedness and frame/hardware compatibility?”
“What is the condition and provenance?” The
intermediary's developer then maps CQs and
current data to shared terms from the CEON
ontologies and identifies gaps. While a Product
concept is present in CEON, there is no notion of a
building element, and locations within a building,
such as floors and rooms etc.

Step 5b & C—Ontology Extension & Alignment (as
needed): The developer extends CEON with door-
specific properties/classes (e.g., hasHandedness,
hasTolerance, hasHingePattern, hasBackset,
hasFrameType, hasRatingCredential, and
hasCondition), some which can be reused from
IFC, to describe item-level passports. Additionally,
location parameters relevant to the door
placement are reused from the Building Topology
Ontology (BOT) ontology, a common ontology
used in the smart buildings domain which is
already used by several of the building owners.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Step 5a—Ontology Requirements & Inventory:
The developer first defines CQs to represent data
needs: “Which tiles in Building X are eligible for
take-back (lot, binder, wear <Y, contamination
<Z) by what OEM?”, “What m? per eligible lot
can be collected within time window W?”, “What
packaging/handling is required per batch?”,
“What is the verified chain-of-custody from
removal to OEM dock?”. They then map current
terms and data to CEON concepts and properties
and list gaps.

Step 5b—Ontology Extension (as needed): While
most concepts and properties needed are already
availablein CEON, forthe sake of understandability
the developer decides to add tile-specific concepts
and properties, e.g., RemanufacturableTile
(subclass of Item), hasLotID, hasBinderType,
hasWearGrade, hasContaminationScore, etc.

56

Step 6—Ensure technical interoperability: data formats

Responsible role: ¢, Developer.

In the previous step, we introduced semantic
interoperability and an ontology network to
describe a data model to create a common
understanding of what kinds of data we want
to exchange across parties (Step 5). However, to
achieve true data interoperability, we need to
map existing datasets onto that ontology. The
next step introduces some technical best practices
of how to achieve that, but in this step, Step 6,
we first introduce some background technical
information: interoperable data formats.

Graph data

Existing tabular or tree-based data structures
inherently have limited flexibility: changing a
database schema typically requires a database
migration, and creating new combinations of data
within a database introduces the need for joins
and join tables. To make sure we can map our
data in such a way that it becomes interoperable
for many different parties and their use cases, we
would benefit from a more flexible data model.

We therefore recommend a graph-based datamodel,
with its primitives only consisting of nodes and edges.
By only using nodes and edges, we have a very
flexible means of introducing new structures (“it’s

Prefixes

=l Tty o5 s Lk 1Ea b

r=fa LTI

just adding a new edge and node to the existing
graph”) and introducing new links (“it’s just adding a
new edge between two existing nodes in a graph”).

Labeled property graphs and companies such
as Neo4dl) use a similar graph-based datamodel.
However, labeled property graphs are stored in a
centralized database. The graph-based datamodel
makes it easier to introduce new data and new data
links in the existing (centralized) graph, however,
the problem of introducing new data stores and
new cross-party data links is NOT solved.

The Resource Description Framework (RDF)

We apply a different graph-based datamodel,
called the Resource Description Framework (RDF).
This framework allows structuring data in a graph,
but further introduces global identifiers, i.e. web
identifiers, URIs. In RDF, data is structured as
triples: a subject (node), a predicate (edge), and
an object (node), where subjects and predicates
are URIs (thus, becoming globally identifiable), and
each object can be either a literal (value) or a URL.
Since OWL is based on RDF, the ontology described
in Step 5 can also be encoded as an RDF graph,
and thus allow instance data to be linked to other
instance data or to ontologies.

ewon-produck: Dl 2w adboegdtl

A ex:FloorTile_type_y }-c 'I..-IH'{ ceon—product:Product>

wedn-ana-log eadell= Ry

C ex:Tile_id1234 K__IH < ceon-product:ltem >

o wlaan

y

"Tile id1234 of
product type Y"

Figure: Graph data described using RDF.

RDF data can be represented in many different
(syntactic) formats: you can represent an RDF
graph in JSON using the JSON-LD specification, in
XML using the RDF/XML specification, and others,
such as Turtle: a dedicated format to represent RDF
data. Turtle is specifically designed to be human
readable and compact, so that it is relatively easy
to understand an RDF file in this syntax, even when
inspecting it using a text editor.

Below, we see a piece of RDF data that represents
a specific type of product: a subject (URI, noted
with angle brackets <URI>) links via a predicate
(URI) to an object (URI).

<http://example.com/FloorTile_type_y>

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://w3id.org/CEON/ontology/product/Product> .

Turtle provides a couple of shortcut mechanisms
to make the data more easy to read, as seen
in the next example. First, we see some prefix
declarations, to make URIs shorter to write.
The next triple links a tile’s identifier to its type
(Item) via the rdf:type ontology term), and via
the rdfs:label predicate to its name (literal, noted
with double quotes ""). The final triple specifies
after which Product is modelled by. As all triples
describe the same subject, we can use a shortcut
via the semi-colon.

More about RDF and

knowledge graphs

RDF was developed by

the World Wide Web

Consortium (W3cC)

in the late 1990s as

part of the effort to

create a “semantic

web” where web data can be understood
and processed by machines. RDF became a
W3C Recommendation in 1999, marking its
official adoption as a standard for describing
web resources. RDF is the backbone of linked
data on the web, which encourages the
interlinking of web resources to create a web
of data, rather than isolated documents.
What is nowadays called knowledge graphs
is commonly seen as an extension of the
linked data concept. RDF is one of the most
common formats for knowledge graphs.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ceon-product: <http://w3id.org/CEON/ontology/product/>

PREFIX ex: <http://example.com/>
ex:Tile_id1234 rdf:type ceon-product:ltem;
rdfs:label "Tile id1234 of product type Y";

ceon-product:modelledBy ex:FloorTile_type_y.

These triples could be illustrated in the graphical
notation (Grafoo) that you have seen earlier in
this guide: see figure to the left.

57

58

Step 7—Define data transformation: connecting data and ontologies

Responsible role: ¢, Developer. Participants: ‘ Data Stewards, to verify the correct mapping of the data.

Once relevant data, required to solve the user
stories (Step 2), has been identified in the data
inventory (Step 3) and the infrastructure to
share the data has been set up (Step 4), the next
step is to ensure that heterogeneous datasets,
each with their own formats (e.g. databases,
CSV, JSON, XML) and model (e.g. product, item,
resource or material as term to express the same
thing), can be represented in a uniform way that
is semantically meaningful across all actors.
Within the Open Circularity Platform (),
this is achieved by mapping company-specific
data sources into RDF according to the Circular
Economy Ontology Network () (Step 5),
which serves as the global schema.

Data mappings

At the core of this process is the mapping
component, which defines how data from a
source schema is translated into RDF resources
that follow the ontology. To describe these
mappings, we use the RDF Mapping Language?®
(RML), an extension of the W3C standard
R2RML?. Unlike R2RML, which is restricted to
relational databases, RML supports a variety of
data sources, making it well-suited for real-world
scenarios where companies rely on diverse legacy
systems. To make RML easier to configure, we
use YARRRML?, a human-friendly syntax that is
converted into machine-readable RML rules by
the YARRRML Parser.

The mapping files created by each actor specify:

Which data is shared,

How it is translated to RDF aligned with ,
How the data is split across resources,

How it is stored on a Solid Pod, and:

Which access control rules apply.

A detailed tutorial explaining how to write these
mapping filesin YARRRML is linked from our website.

In its essence, creating and managing mapping
files goes as follows. First, specify the globally
unique and permanent identification schema you
will apply, i.e. specify how to go from your local
identifiers to URIs. A simple URI scheme could
be https://[organization domain]/data/[element
concept type]/[element local id]. This URI scheme
includes semantics in the identifier. Such a human-
readable URI makes debugging your setup-up
much easier. However, this is not deemed a best
practice: in this case, encoding the type of the
element within your URI makes it confusing later
if the type of the element changes (and global
identifiers should not change). Just using generic
identifiers such as UUIDs is preferred.

Second, the internal data is iterated upon. In a
CSV file, this means going over every row of the
file. In a relational database, this means executing
a query and going over every query result. For a
JSON file a JSONPath expression, e.g. S.items[*],
can be defined to iterate over each item entry
individually. Depending on which data source
you are accessing, different query languages are
applicable (e.g., SQL for a relational database,
JSONPath for JSON files, XPath for XML files).

~
{"items": [
{"id": 1234, "type": "FloorTile", "model": "y"},
{"id": 5678, "type": "FloorTile", "model": "z"}

YARRRML Mapping

solid-ocp-transformer

Third, for each iteration, the mapping from the
relevant data fields to an RDF representation
is described, e.g. the internal column ‘name’ is
mapped to ontology term dcterms:title, etc.

Generating RDF data

Once a mapping file is done, this can be used to
instruct a mapping engine to perform the actual
data transformations. The RMLMapper is a
mature mapping engine.

During execution, the RMLMapper processes the
mapping rules, generates RDF data, and stores
this data on the Solid Pod.

Optionally, the data can be wrapped in a Verifiable
Credential?® (VC) envelope. This additional step
ensures that data consumers can verify the
authenticity and integrity of shared resources
using standard VC mechanisms.

Finally, also data lifecycle events must be handled.
Updates to the source must trigger a re-execution
of the mapping, automatically replacing outdated
RDF resources. When source data is deleted,
obsolete RDF resources must be removed from
the Solid Pod, maintaining consistency between
the source and the published data.

Mapping pipeline

In Onto-DESIDE, we have built a Docker image,
available as rmlio/solid-ocp-transformer on
Docker Hub, that encapsulates a complete
pipeline—from source data to -aligned
RDF with access control and verifiable claims.
This simplifies deployment and guarantees
reproducibility. With one command, a system
administrator can run the full process:

. Transform heterogeneous data into RDF,
. Split it into subsets,

. Add Verifiable Credentials,

. Upload resources to the Solid Pod,

. Configure access control rules, and:

. Delete obsolete data.

Uk, WN B

By following this transformation step, all actors
in the can share interoperable, trustworthy,
and access-controlled data, while still maintaining
full control over their own systems and sources.
This approach ensures that the platform not
only integrates heterogeneous datasets but also
establishes a secure and verifiable foundation
for data exchange within the circular economy.

. .. . <index>
Figure: Combining the different
. []1 rdfs:seeAlso
parts into a whole.
<Tile_id1234>
<Tile_id5678>.
[
. -
u <Tile_id1234> -
= | <Tile_id1234> duct: Tt
-i. -'- lle 1 a ceon-proauct: em; ‘
d ceon-product:modelledBy ex:FloorTile_type_y.
)
= - v
<Tile_id5678> -
DOCKER CSS

<Tile_id5678> a ceon-product:Item; ‘
ceon-product:modelledBy ex:FloorTile_type_z.

https://docs.google.com/presentation/d/1gGN4UQlu8VhZd7oQOu81zqwz1BYzDlvaIPRYWttnvIU/edit?usp=sharing
https://github.com/KNowledgeOnWebScale/OntoDESIDE-Tutorials/tree/v1.0.0

60

Step 8—Set up querying: federated querying with SPARQL

Responsible role: ¢, Developer. Participants: ¢» End users to verify that queries meet information needs.

Once data has been described by ontologies and
expressed in a standard format, Steps 8 and 9
are about putting the data into use. First, given
that your data is now in RDF form, it is time to
create the SPARQL queries that are to be used for
accessing the data from an application point of view.

The SPARQL query language

Now that we have all data in the standardised
RDF format, integrating data becomes a matter of
sending queries to all relevant data sources. SPARQL
is a query language to select specific data from
RDF datasets. By querying the relevant datasets via
SPARQL, data can be integrated on the fly, and the
right answers are generated dynamically.

A SELECT query is a typical SPARQL query to find
values that satisfy conditions. The syntax can be
seen as a combination of Turtle and SQL. RDF data
is selected using triple patterns: a triple pattern
is a triple in which each of the components can
be a variable. Further processing or filtering of
the selected RDF data is done using additional
SPARQL modifiers, e.g. LIMIT (returns only the
first n results), OPTIONAL (specifies a left join,
i.e. includes extra information in your results
if it exists, but it won’t remove a result if that
information is missing), FILTER (selects based on

an expression), and ORDER BY (sorts results based
on an expression).

Consider again the example of a specific floor
tile, linked to its type, that was illustrated in Step
5b. The query at the bottom of this page is an
example to find all items modelled by a certain
type of product, in this case "floor tile type y", and
to return both the item itself and its label.

The first three lines declare prefixes, which are
shortcuts so we don't have to repeat long URIs.
The next line selects what information the query
should return, using variables which start with
a question mark. In this case, we want two data
elements: ?item, i.e. the item itself, and ?label,
i.e. the human-readable name of that item.

The last five lines, the where block, describes
the pattern the query looks for in the RDF data.
In this case, each query result must satisfy the
following three conditions: anything bound to
the variable ?item must (i) be of the type <http://
w3id.org/CEON/ontology/product/Item>, (ii)
must have a label, where this label will be bound
to the variable ?label, and (iii) must be modelled
by the product with URI <http://example.com/
FloorTile_type>.

PREFIX ceon-product: <http://w3id.org/CEON/ontology/product/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX ex: <http://example.com/>
SELECT ?item ?label
WHERE
{ ?item a ceon-product:ltem;
rdfs:label ?label;

ceon-product:modelledBy ex:FloorTile_type_y.

}

Federated querying

A SPARQL engine executes the query, running
it against RDF data. Many established SPARQL
engines—such as those built in triple stores such
as Virtuoso, GraphDB, or Qlever—are optimized
for querying their own triple store, but cannot
easily perform federated queries, especially in
cases where the data sources are dynamic.

Comunica is a special kind of SPARQL engine,
capable of processing such SPARQL queries over a
(dynamic) set of data sources (so-called federated
querying): the SPARQL query above could be
asked to multiple resources, over multiple pods,
and Comunica will be able to correctly combine
the information coming for all different resources
and integrate them on the fly.

Query the Web of Linked Data -

Live in your browser. powered by Comunica.

Cheosa Jolaseurens: TR T

L
[EiberE

diiide bt imine BEicki 1 3Nt brasd | I ceonldats

Type or pick a guery:

dseangl | DGraghaLLD

FREFTN

SELECT DISTINCT Mopsponentistel haassFrection
EAF
frraduit EPraaucTLabEL .
Wespoiitlen &
g T
M dmganent oamanenTL e L,
£ [Mespailtl
i
Execule guery

Quary rogulte

Figure: An example of setting up queries in Comunica.

61

Step 6, 7 and 8—Examples for different circular strategies

Steps 6-8 turn aligned data into information that can flow across systems. Step 6 ensures technical
interoperability by expressing data from different organisations in a common graph model (RDF) using
serialisations like JSON-LD, so heterogeneous sources can be combined without redesigning databases.
Step 7 defines mappings from internal formats (CSV, JSON, XML, databases) into this shared model,
specifying what is shared, how it is represented in the ontology, and how it is stored and governed on
decentralised infrastructure such as Solid pods. Step 8 implements information needs as SPARQL queries
executed across multiple decentralised sources, enabling on-the-fly integration for circular decision-
making. Below, we continue the circular strategy examples to show how these steps work in practice.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel
waste into feedstock for floor tiles.

Step 6—Ensure Technical Interoperability: The
suppliers store their data in formats like CSV and
JSON, which vary in structure. To standardize this,
the developer proposes to convert this data into
RDF, linking each field—such as rubber content
or batch ID—to the extended CEON concepts.
This ensures that all actors interpret the data
consistently, enabling smooth exchange and
integration across the digital marketplace.

Step 7—Define Data Transformation: Using
YARRRML mapping files, the developer describes
how CSV headers and JSON keys from the
suppliers' source data—such as “rubber_content”
and“certificate_id”—map to CEON properties
like MatterComposition and hasBatchCertificate.
Sensitive fields, such as toxic substance levels, get
restricted access. Lastly, all the data is uploaded
to the Solid pods of the suppliers.

Step 8—Set Up Querying: To retrieve relevant
information, the developer creates SPARQL
queries, to be executed over the OCP. One query
asks: “Which batches contain recycled rubber
certified below legal thresholds for phthalates?”
These queries run across all decentralized Solid
pods, allowing processors and buyers to verify
compliance and material suitability.

(B) Middle-of-life: repair
\ What: Repair of audio system through

access to reliable spare parts & instructions.

Step 6—Ensure Technical Interoperability:
The OEM stores product data in a relational
database, incl. component IDs, repair history, and
certificates. To ensure technical interoperability,
the OEM enables the representation of this data
in RDF, a flexible graph-based data format that can
easily be shared through the OCP. However, the
original database stays as it is, and the data needed
to respond to the needs of the other actors is only
transformed to RDF on a per-need basis.

Step 7—Define Data Transformation: Using
YARRRML mappings, the OEM maps database
attributes (e.g., “component_id”, “certificate_
reference”) to CEON properties (e.g.,
hasProductComponent, hasCertificate). The
resulting RDF is published to the OEM’s Solid pod.
Access control is applied to sensitive data entities,
such as proprietary data, to support secure,
standardised sharing of product and repair data.

Step 8—Set Up Querying: SPARQL queries
retrieve key information—such as, which speaker
units were repaired, level of recycled material,
and certificate validity. These run across the OCP’s
decentralised Solid pods, including the OEM'’s,
enabling building owners and external repair
partners to verify compliance and repair status.

What: Reuse and resale of a door for use

. (C) End-of-life: reuse
in other building projects.

Step 6—Ensure Technical Interoperability: To
secure technical interoperability, RDF has been
selected as the common data format, and several
of the building owners can already exchange RDF
data directly to/from their facility management
systems. The graph-based structure of RDF, and
use of globally unique identifiers, allows for
seamless integration of new information types,
supporting diverse building owner use cases.

Step 7—Define Data Transformation: The
developer creates YARRRML mappings describing
how building-owner data that isn’t natively in
RDF is transformed to RDF using CEON terms,
with door-specific ontology extensions and
alignments. For example, door IDs are mapped
to URIs and image URLs linked via the property
hasimage, defined in a CEON extension. The
mapping also creates access-control rules for
sensitive data (pricing, precise location), and the
data is then published on Solid pods.

Step 8—Set Up Querying: The developer also
supplies reusable SPARQL queries for buyers
and planners to run over the OCP—for example,
“select doors within £10 mm of WxH for Opening
#ID.” An intermediary executes these queries
across building owners’ Solid pods on the OCP,
returning a shortlist of units suitable for reuse.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Step 6—Ensure Technical Interoperability: All
actors of the decentralized network—building
owners, contractors, intermediaries and OEMs—
decide to keeptheir dataintheiroriginal databases
but to convert this to RDF for exchange through
the OCP, to secure technical interoperability. As
they reuse persistent globally unique URIs to
identify batches and product models, or even
individual tiles, the data of the various actors can
be automatically combined to optimize the take-
back process and create traceability.

Step 7—Define Data Transformation: The
developer creates YARRRML mappings describing
how building-owner data that isn’t natively in
RDF is transformed to RDF using CEON terms,
with door-specific ontology extensions and
alignments. The mapping links door ids to URIs
and image URLs are linked with the property
haslmage, defined as a CEON extension. The
mapping also creates access-control rules for
sensitive data (pricing, precise location), and the
data is then published on Solid pods.

Step 8—Set Up Querying: The developer also
writes SPARQL queries which run over all data
exposed by the set of Solid pods in the OCP, to
answer questions such as “Find eligible tiles by
lot, with area = A and pickup window next 14 days”.

64

Step 9—Develop data access applications

Responsible role: ¢y Developer. Participants: ‘ Decision makers to make decisions on investing in applications + End users to evaluate and guide development of user interfaces.

Although SPARQL (as presented in the previous
step) is a mature standard to query data from
RDF-based data storage, it is for technical
purposes and application access to data. End-
users of the data need to access datain a different
way. In this step, we describe how applications
can access the data, and exemplify this through
a data viewer built in the project. This could
be seen as the starting point for building your
own applications on top of the data sharing
infrastructure, or for connecting your existing
applications to the platform.

From backend to user-facing solutions

Up till now, we mostly introduced the backend
solutions needed to easily share and integrate data
for and from multiple stakeholders in a network.
However, there are some additional steps to be
taken. First, some governance framework needs
to be set up, to make sure that the shared data
is discoverable by the relevant partners in the
network, e.g. managing the configuration of the
value network, and its data sources. Second, data
sharing contracts should be set so that access to
the right data is agreed upon. Third, user-facing
applications are needed to make sure that end
users experience the benefits of easily integrated
data from these backend solutions in an intuitively
understandable way.

Governance

First, concerning governance, existing initiatives
suchasdataspacescanbeapplied. Theseinitiatives
introduce the concept of a data catalogue: a
registry where all data that may be discovered by
the network is described. Note that this catalogue
does not contain the actual data, but only the
metadata. Within this step, we propose a source
index, managed by a network administrator. Such
a source index contains pointers to the location of

the data of all included actors within the network,
as a starting point for queries. Every change,
e.g. every time a resource is added or removed,
should be reflected in the source index. For the
Onto-DESIDE demonstrators, we have maintained
domain-specific source indexes, i.e. containing the
URIs of data sources from resp. for the construction,
electronics and textile domain, and a cross-domain
index, covering these three domains.

Access control

Second, concerning access control, the Solid
specifications provide a way to set access control
rules on specific user accounts, or user account
groups, thus providing role-based access control
(RBAC). Granting or denying read or write
access can be made simple via dedicated user-
facing applications. We provided LOAMA as a
demonstrator of how such an access management
application could look like. Alink to this application
is available on the project website. Considering
the resale of doors, a building owner can use
LOAMA to grant read access to the resources with
commercially sensitive data such as pricing with a
specific buyer, without disclosing this information
to other interested parties.

Frontend applications

Third, end users experience the benefits of these
backend solutions through frontend applications,
which can present the integrated data (i.e. the
query results) to the end user in an intuitively
understandable way. Within the next section,
we introduce such a demonstrator frontend
application.

Using Miravi

Miravi is an exemplary application on top of the
technically and semanticly interoperable open
and access controlled data. Applications like

OCP- Viewer
- integrate data -

T

: - request and grant access -

‘4sssssssssssEmsmEns AssEEEEEEEEEEEEEEE .

(= —--

index storage

Figure: Using the Open Circularity Platform with LOAMA to manage access control.

Miravi showcase the potential of combined data
to enable resource flows and accelerate circular
economy.

Miravi allows you to configure a data dashboard
customized to a specific use case, integrating data
from decentralized open and access controlled
data sources, including but not limited to Solid
pods. During usage, an end user browses the
user-friendly web Ul which provides access to the
Solid-based decentralized data-sharing platform
via predefined SPARQL queries. The predefined
queries can start from an index to traverse an
evolving set of query sources and can make use of
variables to be filled in by the end user for more
flexible querying. Miravi also allows the end user
to export the query results, and to create, save,
and load custom queries. Miravi can be easily

set up, independent of the networks the Solid
pods reside in, following the instructions of the
extensive readme of Miravi’s GitHub repository.

As a demonstrator for the Onto-DESIDE project
an Open Circularity Platform Viewer was
configured using Miravi. The Viewer provides a
set of predefined queries the user can execute
over the Solid pods with example data from the
three domains under focus in the project, i.e. the
textile, electronics, and construction domain. The
predefined queries provide the needed data to
resolve the domain specific and cross-domain use
cases defined to evaluate the project, e.g., for the
repair of an audio system, a building owner can
discover repair instructions and track the digital
product passport information of the original and
repaired product in Viewer.

65

66

Step 10—Plan for maintenance and evolution

Responsible role:

Finally, this step describes various scenarios for
maintenance and evolution of the data sharing
infrastructure, such as extending the value chain
configuration with new actors, including new
data sources, adapting to changes in models,
data and formats, as well as transforming data
into new structural patterns, to adopt new or
alternative ontologies. This step does not cover all
possible scenarios, but gives a hint as to what will
be necessary to keep the infrastructure up to date.

After concluding the previous steps, you have
a robust set of technologies to create more
interoperable data exchange in the Circular
Economy domain. Every subsequent change is
incremental. Depending on where the change
happens, subsequent steps in this guide also
must be reviewed. In the following paragraphs we
discuss how changes to the context, requirements
or certain artefacts will affect what was done in
other steps.

Changes in the Circular Value Chain—Step 1

If changes appear in the context where the data
sharing infrastructure is used, i.e. the value chain
collaboration, then the mapping of flows may
need to be updated and the subsequent steps
may have to be revisited. For instance, it could
involve adding new possible resource paths,
involve new types of actors in the collaboration,
or update the information needs and barriers.

Changes in requirements—Step 2

When a new user need is identified, this must be
added to the list of requirements. Or if a change of
requirements is identified based on, for instance,
a change in the value chain context then the
solutions and decisions made in subsequent steps
will have to be revisited. Perhaps some solutions
are no longer relevant.

Updating the data inventory—Step 3

When the requirements are updated, the data
inventory needs to be reviewed to identify
whether you can cover this requirement with
your existing data inventory or you need to look
for additional data sources (or data collection
opportunities). On the other hand, when the set
of data sources changes (e.g. a new data source is
identified, or an existing data source is updated),
the data inventory must be reviewed and updated
to reflect that. Such a change may in some cases
be an opportunity, but may in some cases instead
lead to that a data source no longer matches the
information need it was previously used to fulfill.

New previously unseen data may result in needs
to update ontologies and queries, as well as
applications, while removal of data element
usually does not affect the models in the same
way. However, queries can of course no longer ask
for data that is not available.

Changes in data sharing setup—Step 4

When a new actor enters the network, a new data
sharing web service must be set up. However, this
should not affect the other actors in the network,
regarding their data sharing setup.

New or changed value chain configurations

N~ .
New or changed requirements

Developer/ End user. Participants: Any other role that may detect changes/ changing needs.

Changes in ontologies—Step 5

As mentioned previously, ontologies may need
to be updated, based on new information
needs, technical requirements, new or changing
data sources. However, changes could also be
initiated by an update to an ontology the network
relies on, potentially beyond the control of the
value chanin actors. Relying on standards and
frequently used ontologies is a good practice,
since this increases interoperability also across
value chain collaborations, but it also means that
some ontologies may be outside the control of
the involved actors. Updates to such ontologies
may then result in the need for updating the data
transformations, queries and potentially slightly
modify applications using the ontologies and data.

Changes in data formats—Step 6

The standards we recommend are mature and
stable, and no direct impact onto or from this
step is expected. In fact, one of the benefits of
applying our approach is that the data formats
are generic, and not specifically tailored to any
industry domain or use case, which makes them
particularly robust and unlikely to change.

Changes in data transformation—Step 7

Changes in the mappings of data to the ontologies
will not appear by themselves, but are always
consequences of other changes. For instance,
when the data inventory is updated or ontologies
change, the data transformations must be
reviewed to identify if there are user needs that
are no longer met, if new user needs can be met,
and assess the need of changes in the mappings
or whether it is merely enough to update the
mappings to a new ontology vocabulary.

Changes in queries—Step 8

Similarly to step 6 the standards we work with
are mature and stable, and no direct impact
onto or from this step are expected. While still
consequences of other changes may have to be
reflected in the queries, e.g. using new vocabulary in
the queries if the ontologies are changed, or querying
over new data sources if such become available.

Changes in applications—Step 9

The use of standard languages, and by separating
the models and queries from the applications,
make applications built on top of this kind of

Figure: Maintenance and evolution means to go back to previous steps in the process.

New or changing data source

) «

=

S
New ontologies orstandards

SR=

T

Je

New or cha'ﬁged a

67

68

infrastructure surprisingly robust. While changes
in data availability and requirements may certainly
result in new or modified data visualisations,
all the formats and data access components
remain the same. Hence, no major changes in
applications will most likely be required based on
changes in any of the previous steps.

Below, we give an overview of how the steps are
dependent on each other. Note how Steps 4, 6,
and 9 are deemed to be independent of changes
happening in the other steps.

Change in scenario A—Adding a new actor to the
value network

In the context of our scenario 1, using recycling
material, as time passes new recycling methods
will appear, and new actors become interested
in the recycled feedstock. In such a marketplace
scenario, there will constantly be new suppliers
of recycled material, and new actors interested
in purchasing batches of materials, hence the
concrete set of actors will change, and new
material flows (step 1) will be added (and others
removed).

In this case, the business case is still selling and
buying recycled materials as feedstock for new
products, hence, requirements (step 2) of the
value network remain more or less the same.
While the data inventory (step 3) is constantly
changing, including data of new suppliers, and
removing actors that no longer provide any
materials for the marketplace. Each new actor
that desires to participate in the material, and
data, exchange needs to set up their data sharing
service (step 4), e.g. contract a Solid pod service.

In case the new flows require new data points
about the recycled materials, the ontologies may

need to be specialised (step 5), however, given
that the requirements remain more or less the
same no extensions to the core ontologies would
be needed. Next, the data source of the new
actors need to be mapped to these ontologies
(step 7), but if the new data is described by a
specialisation of the previous ontologies, then it
may even be possible to use the previous queries
unchanged, simply adding new sources to the
source index used as starting point for the query.
And thus the marketplace application, if built
based on the core ontologies, should remain
more or less unchanged.

Change in scenario B—Adding a new data source
to the infrastructure

In the context of our scenario 2, reuse of building
elements, we may consider the addition of a
BIM system, providing a digital twin view of the
building, by the building owner. Such a system
provides a new source of information about the
used building elements, i.e. also including usage
and repair data about the elements, in addition to
the manufacturing data, product retail data etc.

Addingsuchanew datasource doesnotchangethe
flows, or requirements, nor the way the building
owner will share data with others. However, the
data inventory (step 3) is updated, by adding the
new data source. Then this new data source is
compared with the current ontologies, to see if
they already cover all the needed data points.
In this case, it may be the case that extensions
are needed, if usage data for instance was not
previously covered by the ontologies. Thus, an
ontology extension is needed, where external
ontology models for BIM can be reused, through
adding an alignment (step 5c) to the core
modules.

Subsequently, a mapping of the data source (step
7) is needed, to these new ontology extensions,
and formulation of new queries (step 8) that
include these data, to complement previous reuse
queries. If the applications (step 9) for mediating
and marketing reused building elements are not
able to take into account usage data aspects in
their presentation of the available elements, they
may need to be updated. For instance, consider
the case of adding a way to search and filter used
doors based on the type of usage of the rooms
they have been mounted in, or based on the
usage frequency.

Changes across scenarios—Modifying an
ontology

We have previously described the flexibility of
the graph data model in adapting to different
situations that may occur in the real world
(especially, in a complex domain such as that of
CE value chains) that is to be modelled. Yet, even
if ontological data schemas are less rigorous than
most other schema types, sometimes we need
to reshape the data in such a way that even the
ontology itself needs to be modified. This may
hold even though the world itself has not changed.
The motivation for such a change would typically
be the need for greater conciseness of the data
graph, but sometimes also, a bit opposite, putting
some (previously tiny or implicit) parts of the
graph into the spotlight. The ontology should
then undergo what we label as transformation.

A simple example of ontology transformation is
de-reification. Remember the material content
modeling problem: in the reification style of
modeling, contains a MatterComposition
class, connected with relations possibly called
“item”, “matter”, “value” and “unit” . Then we

find out that reaching from the item (such as

“tile”) to the matter (such as “calcium sulfate”) is
cumbersome for some applications, because of
the intermediate hops in the graph. For example:
a data diagram in a visualization tool would be too
cluttered, or some large-scale data analytics tasks
would have to search in an unnecessarily large space.

An ontology transformation tool, such as
PatOMat2 developed in the Onto-DESIDE project
(see further information on our website), can
then help us identify the possible “shortcut”
(leading directly from the item to the matter), and
introduce it into the ontology. Moreover, it can
suggest, through a call to a pre-trained language
model, a possible label for the new “shortcut”
relation, for example, “contains matter”.

69

Step 9 and 10—Examples for different circular strategies

Steps 9 and 10 bring the infrastructure to end users and keep it adaptable. Step 9 develops data access
applications—dashboards, portals or extensions to existing tools—that run SPARQL queries over
decentralised sources, presenting integrated, access-controlled data in task-oriented views without
exposing technical complexity. Step 10 plans maintenance and evolution: governance for catalogues and
roles, management of data-sharing agreements, and monitoring of changing needs, sources, standards
or ontologies. Because data formats, ontologies, mappings and queries are separated from applications,
most updates can be made by adjusting these layers rather than rebuilding systems, keeping the setup

robust over time.

(A) Beginning-of-life: using recycled input
What: Cross-sector recycling of apparel
waste into feedstock for floor tiles.

Step 9-Develop Data Access Applications: The
developers of the materials marketplace edit
their dashboard to browse available batches of
recycled rubber based on the new terms of the
extended CEON vocabulary. This app connects
to the OCP, consisting of the published Solid
pods, and runs the predefined SPARQL queries to
retrieve batch composition, recycled content, and
certification status. Sensitive data, such as exact
toxic substance levels, is only shown to specific
authorized users. The interface allows filtering by
material type and compliance status, supporting
informed procurement decisions and enabling
traceable, circular sourcing.

Step 10-Plan Maintenance and Evolution: As
new suppliers join the marketplace or regulations
change, the data steward and the developers
update the data inventory, ontology, YARRRML
mapping files and SPARQL queries. As the system
was designed to accommodate new actors
and data sources this does not disrupt existing
workflows, and long-term adaptability and
compliance in the circular value chain is ensured.

(B) Middle-of-life: repair
\ What: Repair of audio system through

access to reliable spare parts & instructions.

Step 9-Develop Data Access Applications: A
building owner can now use a repair portal to
check the options for repair or replacement of the
speaker unit. The app connects to the Solid pods
of the OCP and runs SPARQL queries to display
repair and replacement options, including details
on recycled content, and compliance certificates.
Sensitive data is restricted to authorized users.
The interface allows verification of environmental
compliance, supports informed decision-making,
and ensures traceability of repaired components.

Step 10-Plan Maintenance and Evolution: If the
OEM updates its repair process or introduces new
materials into their spare parts, the ontology can
be extended to reflect these changes. New data
mappings are then created, and SPARQL queries
are adjusted to include updated terms. Thus, such
new data can then be displayed by apps built on
top of the infrastructure, without substantial
changes to their implementation. The system
supports ongoing evolution, allowing new actors,
data sources, and regulatory requirements to be
integrated without disrupting existing workflows.

(C) End-of-life: reuse
’ What: Reuse and resale of a door for use

in other building projects.
Step 9-Develop Data Access Applications: The
intermediary hosting a marketplace application,
for sale of reused construction elements, extends
their application from manual data input to using
SPARQL queries over the OCP to retrieve data
from door passports shared via decentralised
Solid pods. This data is processed to present
items that match the needs of the logged in
users. Interested buyers can request read access
to sensitive data such as price or exact location.
This information is rendered only after this access
is granted to the logged in user.

Step 10-Plan Maintenance and Evolution: When
new fire ratings, new component attributes or
new certification types appear, data inventories,
ontologies, mappings and queries are updated.
As the graph-based structure of RDF allows for
seamless integration of new properties into the
datasets, without the need to adapt all other
datasets, the data on the decentralized Solid
pods remains backwards compatible and reuse
transactions and queries continue reliably.

D) End-of-life: remanufacturing
What: Take-back of the floor tiles by the
manufacturer for remanufacturing.

Step 9-Develop Data Access Applications: An
intermediary builds a digital portal to support
take-back: owners view eligibility status by zone;
contractors see removal/packaging instructions;
OEMs pre-book pickups, generate manifests, and
issue compensation offers; logistics receives route
plans. The app runs predefined SPARQL queries to
retrieve the data needed in the portal. Sensitive
pricing information and location data appears
only when an authorized party logs in.

Step 10-Plan Maintenance and Evolution:
As adhesives, testing methods, or take-back
programs evolve, the data stewards and
developers update the data inventories, ontology
modules, mappings, and queries. When new
building owners enter the network, OEMs grant
them read access to selected parts of their data,
and the intermediary expands the sources of the
SPARQL queries feeding the digital portal with the
data of the new building owners, ensuring OEMs
can reliably retrieve end-of-life tiles as future
feedstock.

72

Closing words

To scale the Circular Economy, we need to scale the
information flows that underlie a well-functioning
value network. Luckily most IT infrastructure and
standards we need are already in place, in some
cases since many years - it is just about using
them in a new way, and developing the necessary
models and tools that guide the users specifically
when developing CE solutions.

Itis most likely the case that you as an organisation
already have most of the basic prerequisites
in place. For instance most organisations have
a web server, either as part of their in-house IT
infrastructure or as a hosted service, with security
and access control as part of its basic setup.
URI lookup and linking are also things already
supported by our web application and browsers.
Hence, the step is not too far, to extend this to
linking also our data!

The challenge is to accept and embrace diversity
instead of attempting to create (yet another)
standard or data template to fit all scenarios.
And to avoid lock-in through commercial APls
and formats, but rather focus on open standards
and shared agreements. Technologies, such as
ontologies, can be used to manage this diversity,
create data descriptions and mappings, and allow
for navigating and making use of the diverse data
landscape.

On behalf of all Onto-DESIDE contributors,

C Bleper

Prof Dr Eva Blomqvist
Project coordinator

ONT®@-DESIDE
v %

I LIMIEIE NI
. ':' LU
e " RAGN £ SELLS

)
- o)

OEIREULARISE
“mmec
@ REIA

Concular

iy
Ll Uiniversitht Hamburg

INMPAKT 2
(‘ circular. fashior
o \BE /G
eﬁm’ 47T 4
s - Lindner

73

74

References

w

12

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28

For example, resource extraction has already more than tripled since 1970 and is projected to rise another
60 % by 2060, accounting for over 60 % of global greenhouse gas emissions and 40 % of pollution-linked
health impacts (UNEP, 2024). Such scale places enormous pressure on ecosystems and communities.
Raworth, Kate. Doughnut Economics: Seven Ways to Think like a 21st-Century Economist. Random House
Business Books, 2017.

Circle Economy. Circularity Gap Report 2025. 2025. https://www.circularity-gap.world/2025.

European Commission. Study on the Critical Raw Materials for the EU 2023: Final Report. Directorate
General for Internal Market, Industry, Entrepreneurship and SMEs. Publications Office, 2023. https://data.
europa.eu/doi/10.2873/725585.

European Commission. Circular Economy Action Plan: For a Cleaner and More Competitive Europe. Direc-
torate General for Communication. Publications Office, 2020. https://data.europa.eu/doi/10.2779/05068.
Circle Economy. Circularity Gap Report Finance. 2025. https://finance.circularity-gap.world/.
https://github.com/CommunitySolidServer/CommunitySolidServer
https://www.w3.0rg/TR/2012/REC-owl|2-overview-20121211/

https://www.w3.org/TR/shacl/

https://www.w3.org/TR/rdf11-concepts/

Poveda-Villalén, M., Fernandez-lzquierdo, A., Fernandez-Lopez, M., & Garcia-Castro, R. (2022). LOT: An in-
dustrial oriented ontology engineering framework. Engineering Applications of Artificial Intelligence, 111,
104755. https://doi.org/10.1016/j.engappai.2022.104755

Poveda-Villalén, M., Fernandez-lzquierdo, A., Fernandez-Lopez, M., & Garcia-Castro, R. (2022). LOT: An in-
dustrial oriented ontology engineering framework. Engineering Applications of Artificial Intelligence, 111,
104755. https://doi.org/10.1016/j.engappai.2022.104755

Blomquist, E., Hammar, K., & Presutti, V. (2016). Engineering ontologies with patterns—the eXtreme design
methodology. In Ontology Engineering with Ontology Design Patterns (pp. 23-50). I0S Press

Noy, N., & McGuinness, D. L. (2001). Ontology development 101. Knowledge Systems Laboratory, Stanford
University.

Euzenat, Jérdme, and Pavel Shvaiko. Ontology matching. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007

https://www.dbpedia.org/resources/archivo/

https://bioportal.bioontology.org/

https://lov.linkeddata.es/dataset/lov/
https://github.com/LiUSemWeb/Circular-Economy-Ontology-Catalogue
https://github.com/ernestojimenezruiz/logmap-matcher

https://github.com/liseda-lab/Matcha-DL

https://protege.stanford.edu/

https://robot.obolibrary.org/

https://github.com/mapping-commons/sssom

http://w3id.org/rml/portal/

https://www.w3.org/TR/r2rml/

https://www.w3.org/TR/vc-overview/

https://rml.io/varrrml/spec/

75

https://github.com/CommunitySolidServer/CommunitySolidServer
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/rdf11-concepts/
https://www.dbpedia.org/resources/archivo/
https://bioportal.bioontology.org/
https://lov.linkeddata.es/dataset/lov/
https://github.com/LiUSemWeb/Circular-Economy-Ontology-Catalogue
https://github.com/ernestojimenezruiz/logmap-matcher
https://github.com/liseda-lab/Matcha-DL
https://protege.stanford.edu/
https://robot.obolibrary.org/
https://github.com/mapping-commons/sssom
http://w3id.org/rml/portal/
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/vc-overview/
https://rml.io/yarrrml/spec/

76

ON'Ig-DESIDE

www.ontodeside.eu

	This guide - how it came to be, who it’s for, and how to use it
	Why, what and how of Circular Economy
	For all circular strategies - from recycling to repair & from reuse to remanufacturing
	Decentrally sharing data - an overview of the what, why and how
	Step 1 - Map information flows - value chains are more than resource flows alone
	Step 1 - Examples for different circular strategies
	Step 2 - Define technical requirements: what do users need data for?
	Step 3 - Build a data Inventory: what data is available or could be collected
	Step 4 - Enable data sharing: how and by/with whom?
	Step 2, 3 and 4 - Examples for different circular strategies
	Step 5 - Ensure semantic Interoperability and Ontologies
	Step 5a - Ontology Requirements and Inventory
	Step 5b - Ontology Extension
	Step 5c - Ontology Alignment
	Step 5 - Examples for different circular strategies
	Step 6 - Ensure technical interoperability - Data formats
	Step 7 - Define data transformation - connecting data and ontologies
	Step 8 - Set up querying - Federated querying with SPARQL
	Step 6, 7 and 8 - Examples for different circular strategies
	Step 9 - Develop data access applications
	Step 10 - Plan for maintenance and evolution
	Step 9 and 10 - Examples for different circular strategies
	Closing words
	References

